并查集是我在学习图的最小生成树Kruskal算法时,了解到的一种数据结构,其主要用于判断待选Edge是否与已选Edges构成闭合回路。下面是我在网上找到的不错的文章。
算法学习笔记(1) : 并查集
原文链接:https://zhuanlan.zhihu.com/p/93647900
并查集被很多ACM选手认为是最简洁而优雅的数据结构之一,主要用于解决一些元素分组的问题。它管理一系列不相交的集合,并支持两种操作:
- 合并(Union):把两个不相交的集合合并为一个集合。
- 查询(Find):查询两个元素是否在同一个集合中。
当然,这样的定义未免太过学术化,看完后恐怕不太能理解它具体有什么用。所以我们先来看看并查集最直接的一个应用场景:亲戚问题。
(洛谷P1551)亲戚
题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
输入格式
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000
),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。
以下m行:每行两个数Mi,Mj,1<=Mi
,Mj<=N
,表示Mi和Mj具有亲戚关系。
接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
输出格式
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
这其实是一个很有现实意义的问题。我们可以建立模型,把所有人划分到若干个不相交的集合中,每个集合里的人彼此是亲戚。为了判断两个人是否为亲戚,只需看它们是否属于同一个集合即可。因此,这里就可以考虑用并查集进行维护了。
并查集的引入
并查集的重要思想在于,用集合中的一个元素代表集合。我曾看过一个有趣的比喻,把集合比喻成帮派,而代表元素则是帮主。接下来我们利用这个比喻,看看并查集是如何运作的。
最开始,所有大侠各自为战。他们各自的帮主自然就是自己。(对于只有一个元素的集合,代表元素自然是唯一的那个元素)
现在1号和3号比武,假设1号赢了(这里具体谁赢暂时不重要),那么3号就认1号作帮主(合并1号和3号所在的集合,1号为代表元素)。
现在2号想和3号比武(合并3号和2号所在的集合),但3号表示,别跟我打,让我帮主来收拾你(合并代表元素)。不妨设这次又是1号赢了,那么2号也认1号做帮主。
现在我们假设4、5、6号也进行了一番帮派合并,江湖局势变成下面这样:
现在假设2号想与6号比,跟刚刚说的一样,喊帮主1号和4号出来打一架(帮主真辛苦啊)。1号胜利后,4号认1号为帮主,当然他的手下也都是跟着投降了。
好了,比喻结束了。如果你有一点图论基础,相信你已经觉察到,这是一个树状的结构,要寻找集合的代表元素,只需要一层一层往上访问父节点(图中箭头所指的圆),直达树的根节点(图中橙色的圆)即可。根节点的父节点是它自己。我们可以直接把它画成一棵树:
用这种方法,我们可以写出最简单版本的并查集代码。
初始化
int fa[MAXN];
inline void init(int n) {
for (int i = 1; i <= n; ++i)
fa[i] = i;
}
假如有编号为1, 2, 3, ..., n的n个元素,我们用一个数组fa[]来存储每个元素的父节点(因为每个元素有且只有一个父节点,所以这是可行的)。一开始,我们先将它们的父节点设为自己。
查询
int find(int x) {
if(fa[x] == x)
return x;
else
return find(fa[x]);
}
我们用递归的写法实现对代表元素的查询:一层一层访问父节点,直至根节点(根节点的标志就是父节点是本身)。要判断两个元素是否属于同一个集合,只需要看它们的根节点是否相同即可。
合并
inline void merge(int i, int j) {
//此处为将i所在的树合并到j所在的树中
fa[find(i)] = find(j);
}
合并操作也是很简单的,先找到两个集合的代表元素,然后将前者的父节点设为后者即可。当然也可以将后者的父节点设为前者,这里暂时不重要。本文末尾会给出一个更合理的比较方法。
路径压缩
最简单的并查集效率是比较低的。例如,来看下面这个场景:
现在我们要merge(2,3),于是从2找到1,fa[1]=3,于是变成了这样:
然后我们又找来一个元素4,并需要执行merge(2,4):
从2找到1,再找到3,然后fa[3]=4,于是变成了这样:
大家应该有感觉了,这样可能会形成一条长长的链,随着链越来越长,我们想要从底部找到根节点会变得越来越难。
怎么解决呢?我们可以使用路径压缩的方法。既然我们只关心一个元素对应的根节点,那我们希望每个元素到根节点的路径尽可能短,最好只需要一步,像这样:
其实这说来也很好实现。只要我们在查询的过程中,把沿途的每个节点的父节点都设为根节点即可。下一次再查询时,我们就可以省很多事。这用递归的写法很容易实现:
合并(路径压缩)
int find(int x) {
if(x == fa[x])
return x;
else{
fa[x] = find(fa[x]); //父节点设为根节点
return fa[x]; //返回父节点
}
}
以上代码常常简写为一行:
int find(int x){
return x == fa[x] ? x : (fa[x] = find(fa[x]));
}
注意赋值运算符=的优先级没有三元运算符?:高,这里要加括号。
路径压缩优化后,并查集的时间复杂度已经比较低了,绝大多数不相交集合的合并查询问题都能够解决。然而,对于某些时间卡得很紧的题目,我们还可以进一步优化。