mirror of
https://github.com/ArthurSonzogni/FTXUI.git
synced 2024-11-22 10:40:00 +08:00
Update float style in animation.cpp (#607)
Partially taken out of: https://github.com/ArthurSonzogni/FTXUI/pull/600 Co-authored-by: LostInCompilation <12819635+LostInCompilation@users.noreply.github.com>
This commit is contained in:
parent
521d1125d9
commit
7b08dae6d0
@ -18,7 +18,7 @@ void RequestAnimationFrame();
|
||||
|
||||
using Clock = std::chrono::steady_clock;
|
||||
using TimePoint = std::chrono::time_point<Clock>;
|
||||
using Duration = std::chrono::duration<double>;
|
||||
using Duration = std::chrono::duration<float>;
|
||||
|
||||
// Parameter of Component::OnAnimation(param).
|
||||
class Params {
|
||||
|
@ -9,8 +9,8 @@ namespace ftxui::animation {
|
||||
namespace easing {
|
||||
|
||||
namespace {
|
||||
constexpr float kPi = 3.14159265358979323846F;
|
||||
constexpr float kPi2 = kPi / 2.F;
|
||||
constexpr float kPi = 3.14159265358979323846f;
|
||||
constexpr float kPi2 = kPi / 2.f;
|
||||
} // namespace
|
||||
|
||||
// Easing function have been taken out of:
|
||||
@ -37,18 +37,16 @@ float QuadraticIn(float p) {
|
||||
|
||||
// Modeled after the parabola y = -x^2 + 2x
|
||||
float QuadraticOut(float p) {
|
||||
return -(p * (p - 2));
|
||||
return -(p * (p - 2.f));
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quadratic
|
||||
// y = (1/2)((2x)^2) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
||||
float QuadraticInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 2 * p * p;
|
||||
} else {
|
||||
return (-2 * p * p) + (4 * p) - 1;
|
||||
}
|
||||
return p < 0.5f // NOLINT
|
||||
? 2.f * p * p // NOLINT
|
||||
: (-2.f * p * p) + (4.f * p) - 1.f; // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the cubic y = x^3
|
||||
@ -58,20 +56,19 @@ float CubicIn(float p) {
|
||||
|
||||
// Modeled after the cubic y = (x - 1)^3 + 1
|
||||
float CubicOut(float p) {
|
||||
const float f = (p - 1);
|
||||
return f * f * f + 1;
|
||||
const float f = (p - 1.f);
|
||||
return f * f * f + 1.f;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise cubic
|
||||
// y = (1/2)((2x)^3) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
||||
float CubicInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 4 * p * p * p;
|
||||
} else {
|
||||
const float f = ((2 * p) - 2);
|
||||
return 0.5F * f * f * f + 1; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 4.f * p * p * p;
|
||||
}
|
||||
const float f = ((2.f * p) - 2.f);
|
||||
return 0.5f * f * f * f + 1.f; // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the quartic x^4
|
||||
@ -81,20 +78,19 @@ float QuarticIn(float p) {
|
||||
|
||||
// Modeled after the quartic y = 1 - (x - 1)^4
|
||||
float QuarticOut(float p) {
|
||||
const float f = (p - 1);
|
||||
return f * f * f * (1 - p) + 1;
|
||||
const float f = (p - 1.f);
|
||||
return f * f * f * (1.f - p) + 1.f;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quartic
|
||||
// y = (1/2)((2x)^4) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
||||
float QuarticInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 8 * p * p * p * p; // NOLINT
|
||||
} else {
|
||||
const float f = (p - 1);
|
||||
return -8 * f * f * f * f + 1; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 8.f * p * p * p * p; // NOLINT
|
||||
}
|
||||
const float f = (p - 1.f);
|
||||
return -8.f * f * f * f * f + 1.f; // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the quintic y = x^5
|
||||
@ -104,25 +100,24 @@ float QuinticIn(float p) {
|
||||
|
||||
// Modeled after the quintic y = (x - 1)^5 + 1
|
||||
float QuinticOut(float p) {
|
||||
const float f = (p - 1);
|
||||
return f * f * f * f * f + 1;
|
||||
const float f = (p - 1.f);
|
||||
return f * f * f * f * f + 1.f;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quintic
|
||||
// y = (1/2)((2x)^5) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
||||
float QuinticInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 16 * p * p * p * p * p; // NOLINT
|
||||
} else { // NOLINT
|
||||
float f = ((2 * p) - 2); // NOLINT
|
||||
return 0.5 * f * f * f * f * f + 1; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 16.f * p * p * p * p * p; // NOLINT
|
||||
}
|
||||
float f = ((2.f * p) - 2.f); // NOLINT
|
||||
return 0.5f * f * f * f * f * f + 1.f; // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave
|
||||
float SineIn(float p) {
|
||||
return std::sin((p - 1) * kPi2) + 1;
|
||||
return std::sin((p - 1.f) * kPi2) + 1.f;
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave (different phase)
|
||||
@ -132,79 +127,77 @@ float SineOut(float p) {
|
||||
|
||||
// Modeled after half sine wave
|
||||
float SineInOut(float p) {
|
||||
return 0.5F * (1 - std::cos(p * kPi)); // NOLINT
|
||||
return 0.5f * (1.f - std::cos(p * kPi)); // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant IV of unit circle
|
||||
float CircularIn(float p) {
|
||||
return 1 - std::sqrt(1 - (p * p));
|
||||
return 1.f - std::sqrt(1.f - (p * p));
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant II of unit circle
|
||||
float CircularOut(float p) {
|
||||
return std::sqrt((2 - p) * p);
|
||||
return std::sqrt((2.f - p) * p);
|
||||
}
|
||||
|
||||
// Modeled after the piecewise circular function
|
||||
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
||||
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
||||
float CircularInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 0.5F * (1 - std::sqrt(1 - 4 * (p * p))); // NOLINT
|
||||
} else {
|
||||
return 0.5F * (std::sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1); // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 0.5f * (1.f - std::sqrt(1.f - 4.f * (p * p))); // NOLINT
|
||||
}
|
||||
// NOLINTNEXTLINE
|
||||
return 0.5f * (std::sqrt(-((2.f * p) - 3.f) * ((2.f * p) - 1.f)) + 1.f);
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = 2^(10(x - 1))
|
||||
float ExponentialIn(float p) {
|
||||
return (p == 0.0) ? p : std::pow(2, 10 * (p - 1)); // NOLINT
|
||||
return (p == 0.f) ? p : std::pow(2.f, 10.f * (p - 1.f)); // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = -2^(-10x) + 1
|
||||
float ExponentialOut(float p) {
|
||||
return (p == 1.0) ? p : 1 - std::pow(2, -10 * p); // NOLINT
|
||||
return (p == 1.f) ? p : 1.f - std::pow(2.f, -10.f * p); // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponential
|
||||
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
||||
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
||||
float ExponentialInOut(float p) {
|
||||
if (p == 0.0 || p == 1.F) {
|
||||
if (p == 0.f || p == 1.f) {
|
||||
return p;
|
||||
}
|
||||
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 0.5 * std::pow(2, (20 * p) - 10); // NOLINT
|
||||
} else { // NOLINT
|
||||
return -0.5 * std::pow(2, (-20 * p) + 10) + 1; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 0.5f * std::pow(2.f, (20.f * p) - 10.f); // NOLINT
|
||||
}
|
||||
return -0.5f * std::pow(2.f, (-20.f * p) + 10.f) + 1.f; // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
||||
float ElasticIn(float p) {
|
||||
return std::sin(13.F * kPi2 * p) * std::pow(2.F, 10.F * (p - 1)); // NOLINT
|
||||
return std::sin(13.f * kPi2 * p) * std::pow(2.f, 10.f * (p - 1.f)); // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) +
|
||||
// 1
|
||||
float ElasticOut(float p) {
|
||||
// NOLINTNEXTLINE
|
||||
return std::sin(-13.F * kPi2 * (p + 1)) * std::pow(2.F, -10.F * p) + 1;
|
||||
return std::sin(-13.f * kPi2 * (p + 1.f)) * std::pow(2.f, -10.f * p) + 1.f;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponentially-damped sine wave:
|
||||
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
||||
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
||||
float ElasticInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 0.5 * std::sin(13.F * kPi2 * (2 * p)) * // NOLINT
|
||||
std::pow(2, 10 * ((2 * p) - 1)); // NOLINT
|
||||
} else { // NOLINT
|
||||
return 0.5 * (std::sin(-13.F * kPi2 * ((2 * p - 1) + 1)) * // NOLINT
|
||||
std::pow(2, -10 * (2 * p - 1)) + // NOLINT
|
||||
2); // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 0.5f * std::sin(13.f * kPi2 * (2.f * p)) * // NOLINT
|
||||
std::pow(2.f, 10.f * ((2.f * p) - 1.f)); // NOLINT
|
||||
}
|
||||
return 0.5f * (std::sin(-13.f * kPi2 * ((2.f * p - 1.f) + 1.f)) * // NOLINT
|
||||
std::pow(2.f, -10.f * (2.f * p - 1.f)) + // NOLINT
|
||||
2.f); // NOLINT
|
||||
}
|
||||
|
||||
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
||||
@ -214,46 +207,48 @@ float BackIn(float p) {
|
||||
|
||||
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
||||
float BackOut(float p) {
|
||||
const float f = (1 - p);
|
||||
return 1 - (f * f * f - f * std::sin(f * kPi));
|
||||
const float f = (1.f - p);
|
||||
return 1.f - (f * f * f - f * std::sin(f * kPi));
|
||||
}
|
||||
|
||||
// Modeled after the piecewise overshooting cubic function:
|
||||
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
||||
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
||||
float BackInOut(float p) {
|
||||
if (p < 0.5F) { // NOLINT
|
||||
const float f = 2 * p;
|
||||
return 0.5F * (f * f * f - f * std::sin(f * kPi)); // NOLINT
|
||||
} else {
|
||||
float f = (1 - (2 * p - 1)); // NOLINT
|
||||
return 0.5F * (1 - (f * f * f - f * std::sin(f * kPi))) + 0.5; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
const float f = 2.f * p;
|
||||
return 0.5f * (f * f * f - f * std::sin(f * kPi)); // NOLINT
|
||||
}
|
||||
const float f = (1.f - (2.f * p - 1.f)); // NOLINT
|
||||
return 0.5f * (1.f - (f * f * f - f * std::sin(f * kPi))) + 0.5f; // NOLINT
|
||||
}
|
||||
|
||||
float BounceIn(float p) {
|
||||
return 1 - BounceOut(1 - p);
|
||||
return 1.f - BounceOut(1.f - p);
|
||||
}
|
||||
|
||||
float BounceOut(float p) {
|
||||
if (p < 4 / 11.0) { // NOLINT
|
||||
return (121 * p * p) / 16.0; // NOLINT
|
||||
} else if (p < 8 / 11.0) { // NOLINT
|
||||
return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0; // NOLINT
|
||||
} else if (p < 9 / 10.0) { // NOLINT
|
||||
return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + // NOLINT
|
||||
16061 / 1805.0; // NOLINT
|
||||
} else { // NOLINT
|
||||
return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0; // NOLINT
|
||||
if (p < 4.f / 11.f) { // NOLINT
|
||||
return (121.f * p * p) / 16.f; // NOLINT
|
||||
}
|
||||
|
||||
if (p < 8.f / 11.f) { // NOLINT
|
||||
return (363.f / 40.f * p * p) - (99.f / 10.f * p) + 17.f / 5.f; // NOLINT
|
||||
}
|
||||
|
||||
if (p < 9.f / 10.f) { // NOLINT
|
||||
return (4356.f / 361.f * p * p) - (35442.f / 1805.f * p) + // NOLINT
|
||||
16061.f / 1805.f; // NOLINT
|
||||
}
|
||||
|
||||
return (54.f / 5.f * p * p) - (513 / 25.f * p) + 268 / 25.f; // NOLINT
|
||||
}
|
||||
|
||||
float BounceInOut(float p) { // NOLINT
|
||||
if (p < 0.5F) { // NOLINT
|
||||
return 0.5F * BounceIn(p * 2); // NOLINT
|
||||
} else { // NOLINT
|
||||
return 0.5F * BounceOut(p * 2 - 1) + 0.5F; // NOLINT
|
||||
if (p < 0.5f) { // NOLINT
|
||||
return 0.5f * BounceIn(p * 2.f); // NOLINT
|
||||
}
|
||||
return 0.5f * BounceOut(p * 2.f - 1.f) + 0.5f; // NOLINT
|
||||
}
|
||||
|
||||
} // namespace easing
|
||||
|
Loading…
Reference in New Issue
Block a user