FaceAccess/VocieProcess/modules/audio_processing/aec3/render_signal_analyzer.cc

157 lines
5.4 KiB
C++
Raw Permalink Normal View History

2024-09-05 09:59:28 +08:00
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "api/array_view.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kCounterThreshold = 5;
// Identifies local bands with narrow characteristics.
void IdentifySmallNarrowBandRegions(
const RenderBuffer& render_buffer,
const absl::optional<size_t>& delay_partitions,
std::array<size_t, kFftLengthBy2 - 1>* narrow_band_counters) {
RTC_DCHECK(narrow_band_counters);
if (!delay_partitions) {
narrow_band_counters->fill(0);
return;
}
std::array<size_t, kFftLengthBy2 - 1> channel_counters;
channel_counters.fill(0);
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> X2 =
render_buffer.Spectrum(*delay_partitions);
for (size_t ch = 0; ch < X2.size(); ++ch) {
for (size_t k = 1; k < kFftLengthBy2; ++k) {
if (X2[ch][k] > 3 * std::max(X2[ch][k - 1], X2[ch][k + 1])) {
++channel_counters[k - 1];
}
}
}
for (size_t k = 1; k < kFftLengthBy2; ++k) {
(*narrow_band_counters)[k - 1] =
channel_counters[k - 1] > 0 ? (*narrow_band_counters)[k - 1] + 1 : 0;
}
}
// Identifies whether the signal has a single strong narrow-band component.
void IdentifyStrongNarrowBandComponent(const RenderBuffer& render_buffer,
int strong_peak_freeze_duration,
absl::optional<int>* narrow_peak_band,
size_t* narrow_peak_counter) {
RTC_DCHECK(narrow_peak_band);
RTC_DCHECK(narrow_peak_counter);
if (*narrow_peak_band &&
++(*narrow_peak_counter) >
static_cast<size_t>(strong_peak_freeze_duration)) {
*narrow_peak_band = absl::nullopt;
}
const Block& x_latest = render_buffer.GetBlock(0);
float max_peak_level = 0.f;
for (int channel = 0; channel < x_latest.NumChannels(); ++channel) {
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2_latest =
render_buffer.Spectrum(0)[channel];
// Identify the spectral peak.
const int peak_bin =
static_cast<int>(std::max_element(X2_latest.begin(), X2_latest.end()) -
X2_latest.begin());
// Compute the level around the peak.
float non_peak_power = 0.f;
for (int k = std::max(0, peak_bin - 14); k < peak_bin - 4; ++k) {
non_peak_power = std::max(X2_latest[k], non_peak_power);
}
for (int k = peak_bin + 5;
k < std::min(peak_bin + 15, static_cast<int>(kFftLengthBy2Plus1));
++k) {
non_peak_power = std::max(X2_latest[k], non_peak_power);
}
// Assess the render signal strength.
auto result0 = std::minmax_element(x_latest.begin(/*band=*/0, channel),
x_latest.end(/*band=*/0, channel));
float max_abs = std::max(fabs(*result0.first), fabs(*result0.second));
if (x_latest.NumBands() > 1) {
const auto result1 =
std::minmax_element(x_latest.begin(/*band=*/1, channel),
x_latest.end(/*band=*/1, channel));
max_abs =
std::max(max_abs, static_cast<float>(std::max(
fabs(*result1.first), fabs(*result1.second))));
}
// Detect whether the spectral peak has as strong narrowband nature.
const float peak_level = X2_latest[peak_bin];
if (peak_bin > 0 && max_abs > 100 && peak_level > 100 * non_peak_power) {
// Store the strongest peak across channels.
if (peak_level > max_peak_level) {
max_peak_level = peak_level;
*narrow_peak_band = peak_bin;
*narrow_peak_counter = 0;
}
}
}
}
} // namespace
RenderSignalAnalyzer::RenderSignalAnalyzer(const EchoCanceller3Config& config)
: strong_peak_freeze_duration_(config.filter.refined.length_blocks) {
narrow_band_counters_.fill(0);
}
RenderSignalAnalyzer::~RenderSignalAnalyzer() = default;
void RenderSignalAnalyzer::Update(
const RenderBuffer& render_buffer,
const absl::optional<size_t>& delay_partitions) {
// Identify bands of narrow nature.
IdentifySmallNarrowBandRegions(render_buffer, delay_partitions,
&narrow_band_counters_);
// Identify the presence of a strong narrow band.
IdentifyStrongNarrowBandComponent(render_buffer, strong_peak_freeze_duration_,
&narrow_peak_band_, &narrow_peak_counter_);
}
void RenderSignalAnalyzer::MaskRegionsAroundNarrowBands(
std::array<float, kFftLengthBy2Plus1>* v) const {
RTC_DCHECK(v);
// Set v to zero around narrow band signal regions.
if (narrow_band_counters_[0] > kCounterThreshold) {
(*v)[1] = (*v)[0] = 0.f;
}
for (size_t k = 2; k < kFftLengthBy2 - 1; ++k) {
if (narrow_band_counters_[k - 1] > kCounterThreshold) {
(*v)[k - 2] = (*v)[k - 1] = (*v)[k] = (*v)[k + 1] = (*v)[k + 2] = 0.f;
}
}
if (narrow_band_counters_[kFftLengthBy2 - 2] > kCounterThreshold) {
(*v)[kFftLengthBy2] = (*v)[kFftLengthBy2 - 1] = 0.f;
}
}
} // namespace webrtc