945 lines
37 KiB
C
945 lines
37 KiB
C
|
/*
|
||
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#ifndef API_AUDIO_AUDIO_PROCESSING_H_
|
||
|
#define API_AUDIO_AUDIO_PROCESSING_H_
|
||
|
|
||
|
// MSVC++ requires this to be set before any other includes to get M_PI.
|
||
|
#ifndef _USE_MATH_DEFINES
|
||
|
#define _USE_MATH_DEFINES
|
||
|
#endif
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stddef.h> // size_t
|
||
|
#include <stdio.h> // FILE
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <array>
|
||
|
#include <cstdint>
|
||
|
#include <memory>
|
||
|
#include <string>
|
||
|
#include <utility>
|
||
|
|
||
|
#include "absl/base/nullability.h"
|
||
|
#include "absl/strings/string_view.h"
|
||
|
#include "absl/types/optional.h"
|
||
|
#include "api/array_view.h"
|
||
|
#include "api/audio/audio_processing_statistics.h"
|
||
|
#include "api/audio/echo_control.h"
|
||
|
#include "api/ref_count.h"
|
||
|
#include "api/scoped_refptr.h"
|
||
|
#include "api/task_queue/task_queue_base.h"
|
||
|
#include "rtc_base/arraysize.h"
|
||
|
#include "rtc_base/checks.h"
|
||
|
#include "rtc_base/system/rtc_export.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
class AecDump;
|
||
|
class AudioBuffer;
|
||
|
|
||
|
class StreamConfig;
|
||
|
class ProcessingConfig;
|
||
|
|
||
|
class EchoDetector;
|
||
|
|
||
|
// The Audio Processing Module (APM) provides a collection of voice processing
|
||
|
// components designed for real-time communications software.
|
||
|
//
|
||
|
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
|
||
|
// primary stream, on which all processing is applied, are passed to
|
||
|
// `ProcessStream()`. Frames of the reverse direction stream are passed to
|
||
|
// `ProcessReverseStream()`. On the client-side, this will typically be the
|
||
|
// near-end (capture) and far-end (render) streams, respectively. APM should be
|
||
|
// placed in the signal chain as close to the audio hardware abstraction layer
|
||
|
// (HAL) as possible.
|
||
|
//
|
||
|
// On the server-side, the reverse stream will normally not be used, with
|
||
|
// processing occurring on each incoming stream.
|
||
|
//
|
||
|
// Component interfaces follow a similar pattern and are accessed through
|
||
|
// corresponding getters in APM. All components are disabled at create-time,
|
||
|
// with default settings that are recommended for most situations. New settings
|
||
|
// can be applied without enabling a component. Enabling a component triggers
|
||
|
// memory allocation and initialization to allow it to start processing the
|
||
|
// streams.
|
||
|
//
|
||
|
// Thread safety is provided with the following assumptions to reduce locking
|
||
|
// overhead:
|
||
|
// 1. The stream getters and setters are called from the same thread as
|
||
|
// ProcessStream(). More precisely, stream functions are never called
|
||
|
// concurrently with ProcessStream().
|
||
|
// 2. Parameter getters are never called concurrently with the corresponding
|
||
|
// setter.
|
||
|
//
|
||
|
// APM accepts only linear PCM audio data in chunks of ~10 ms (see
|
||
|
// AudioProcessing::GetFrameSize() for details) and sample rates ranging from
|
||
|
// 8000 Hz to 384000 Hz. The int16 interfaces use interleaved data, while the
|
||
|
// float interfaces use deinterleaved data.
|
||
|
//
|
||
|
// Usage example, omitting error checking:
|
||
|
// rtc::scoped_refptr<AudioProcessing> apm = AudioProcessingBuilder().Create();
|
||
|
//
|
||
|
// AudioProcessing::Config config;
|
||
|
// config.echo_canceller.enabled = true;
|
||
|
// config.echo_canceller.mobile_mode = false;
|
||
|
//
|
||
|
// config.gain_controller1.enabled = true;
|
||
|
// config.gain_controller1.mode =
|
||
|
// AudioProcessing::Config::GainController1::kAdaptiveAnalog;
|
||
|
// config.gain_controller1.analog_level_minimum = 0;
|
||
|
// config.gain_controller1.analog_level_maximum = 255;
|
||
|
//
|
||
|
// config.gain_controller2.enabled = true;
|
||
|
//
|
||
|
// config.high_pass_filter.enabled = true;
|
||
|
//
|
||
|
// apm->ApplyConfig(config)
|
||
|
//
|
||
|
// // Start a voice call...
|
||
|
//
|
||
|
// // ... Render frame arrives bound for the audio HAL ...
|
||
|
// apm->ProcessReverseStream(render_frame);
|
||
|
//
|
||
|
// // ... Capture frame arrives from the audio HAL ...
|
||
|
// // Call required set_stream_ functions.
|
||
|
// apm->set_stream_delay_ms(delay_ms);
|
||
|
// apm->set_stream_analog_level(analog_level);
|
||
|
//
|
||
|
// apm->ProcessStream(capture_frame);
|
||
|
//
|
||
|
// // Call required stream_ functions.
|
||
|
// analog_level = apm->recommended_stream_analog_level();
|
||
|
// has_voice = apm->stream_has_voice();
|
||
|
//
|
||
|
// // Repeat render and capture processing for the duration of the call...
|
||
|
// // Start a new call...
|
||
|
// apm->Initialize();
|
||
|
//
|
||
|
// // Close the application...
|
||
|
// apm.reset();
|
||
|
//
|
||
|
class RTC_EXPORT AudioProcessing : public RefCountInterface {
|
||
|
public:
|
||
|
// The struct below constitutes the new parameter scheme for the audio
|
||
|
// processing. It is being introduced gradually and until it is fully
|
||
|
// introduced, it is prone to change.
|
||
|
// TODO(peah): Remove this comment once the new config scheme is fully rolled
|
||
|
// out.
|
||
|
//
|
||
|
// The parameters and behavior of the audio processing module are controlled
|
||
|
// by changing the default values in the AudioProcessing::Config struct.
|
||
|
// The config is applied by passing the struct to the ApplyConfig method.
|
||
|
//
|
||
|
// This config is intended to be used during setup, and to enable/disable
|
||
|
// top-level processing effects. Use during processing may cause undesired
|
||
|
// submodule resets, affecting the audio quality. Use the RuntimeSetting
|
||
|
// construct for runtime configuration.
|
||
|
struct RTC_EXPORT Config {
|
||
|
// Sets the properties of the audio processing pipeline.
|
||
|
struct RTC_EXPORT Pipeline {
|
||
|
// Ways to downmix a multi-channel track to mono.
|
||
|
enum class DownmixMethod {
|
||
|
kAverageChannels, // Average across channels.
|
||
|
kUseFirstChannel // Use the first channel.
|
||
|
};
|
||
|
|
||
|
// Maximum allowed processing rate used internally. May only be set to
|
||
|
// 32000 or 48000 and any differing values will be treated as 48000.
|
||
|
int maximum_internal_processing_rate = 48000;
|
||
|
// Allow multi-channel processing of render audio.
|
||
|
bool multi_channel_render = false;
|
||
|
// Allow multi-channel processing of capture audio when AEC3 is active
|
||
|
// or a custom AEC is injected..
|
||
|
bool multi_channel_capture = false;
|
||
|
// Indicates how to downmix multi-channel capture audio to mono (when
|
||
|
// needed).
|
||
|
DownmixMethod capture_downmix_method = DownmixMethod::kAverageChannels;
|
||
|
} pipeline;
|
||
|
|
||
|
// Enabled the pre-amplifier. It amplifies the capture signal
|
||
|
// before any other processing is done.
|
||
|
// TODO(webrtc:5298): Deprecate and use the pre-gain functionality in
|
||
|
// capture_level_adjustment instead.
|
||
|
struct PreAmplifier {
|
||
|
bool enabled = false;
|
||
|
float fixed_gain_factor = 1.0f;
|
||
|
} pre_amplifier;
|
||
|
|
||
|
// Functionality for general level adjustment in the capture pipeline. This
|
||
|
// should not be used together with the legacy PreAmplifier functionality.
|
||
|
struct CaptureLevelAdjustment {
|
||
|
bool operator==(const CaptureLevelAdjustment& rhs) const;
|
||
|
bool operator!=(const CaptureLevelAdjustment& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
bool enabled = false;
|
||
|
// The `pre_gain_factor` scales the signal before any processing is done.
|
||
|
float pre_gain_factor = 1.0f;
|
||
|
// The `post_gain_factor` scales the signal after all processing is done.
|
||
|
float post_gain_factor = 1.0f;
|
||
|
struct AnalogMicGainEmulation {
|
||
|
bool operator==(const AnalogMicGainEmulation& rhs) const;
|
||
|
bool operator!=(const AnalogMicGainEmulation& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
bool enabled = false;
|
||
|
// Initial analog gain level to use for the emulated analog gain. Must
|
||
|
// be in the range [0...255].
|
||
|
int initial_level = 255;
|
||
|
} analog_mic_gain_emulation;
|
||
|
} capture_level_adjustment;
|
||
|
|
||
|
struct HighPassFilter {
|
||
|
bool enabled = false;
|
||
|
bool apply_in_full_band = true;
|
||
|
} high_pass_filter;
|
||
|
|
||
|
struct EchoCanceller {
|
||
|
bool enabled = false;
|
||
|
bool mobile_mode = false;
|
||
|
bool export_linear_aec_output = false;
|
||
|
// Enforce the highpass filter to be on (has no effect for the mobile
|
||
|
// mode).
|
||
|
bool enforce_high_pass_filtering = true;
|
||
|
} echo_canceller;
|
||
|
|
||
|
// Enables background noise suppression.
|
||
|
struct NoiseSuppression {
|
||
|
bool enabled = false;
|
||
|
enum Level { kLow, kModerate, kHigh, kVeryHigh };
|
||
|
Level level = kModerate;
|
||
|
bool analyze_linear_aec_output_when_available = false;
|
||
|
} noise_suppression;
|
||
|
|
||
|
// TODO(bugs.webrtc.org/357281131): Deprecated. Stop using and remove.
|
||
|
// Enables transient suppression.
|
||
|
struct TransientSuppression {
|
||
|
bool enabled = false;
|
||
|
} transient_suppression;
|
||
|
|
||
|
// Enables automatic gain control (AGC) functionality.
|
||
|
// The automatic gain control (AGC) component brings the signal to an
|
||
|
// appropriate range. This is done by applying a digital gain directly and,
|
||
|
// in the analog mode, prescribing an analog gain to be applied at the audio
|
||
|
// HAL.
|
||
|
// Recommended to be enabled on the client-side.
|
||
|
struct RTC_EXPORT GainController1 {
|
||
|
bool operator==(const GainController1& rhs) const;
|
||
|
bool operator!=(const GainController1& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
|
||
|
bool enabled = false;
|
||
|
enum Mode {
|
||
|
// Adaptive mode intended for use if an analog volume control is
|
||
|
// available on the capture device. It will require the user to provide
|
||
|
// coupling between the OS mixer controls and AGC through the
|
||
|
// stream_analog_level() functions.
|
||
|
// It consists of an analog gain prescription for the audio device and a
|
||
|
// digital compression stage.
|
||
|
kAdaptiveAnalog,
|
||
|
// Adaptive mode intended for situations in which an analog volume
|
||
|
// control is unavailable. It operates in a similar fashion to the
|
||
|
// adaptive analog mode, but with scaling instead applied in the digital
|
||
|
// domain. As with the analog mode, it additionally uses a digital
|
||
|
// compression stage.
|
||
|
kAdaptiveDigital,
|
||
|
// Fixed mode which enables only the digital compression stage also used
|
||
|
// by the two adaptive modes.
|
||
|
// It is distinguished from the adaptive modes by considering only a
|
||
|
// short time-window of the input signal. It applies a fixed gain
|
||
|
// through most of the input level range, and compresses (gradually
|
||
|
// reduces gain with increasing level) the input signal at higher
|
||
|
// levels. This mode is preferred on embedded devices where the capture
|
||
|
// signal level is predictable, so that a known gain can be applied.
|
||
|
kFixedDigital
|
||
|
};
|
||
|
Mode mode = kAdaptiveAnalog;
|
||
|
// Sets the target peak level (or envelope) of the AGC in dBFs (decibels
|
||
|
// from digital full-scale). The convention is to use positive values. For
|
||
|
// instance, passing in a value of 3 corresponds to -3 dBFs, or a target
|
||
|
// level 3 dB below full-scale. Limited to [0, 31].
|
||
|
int target_level_dbfs = 3;
|
||
|
// Sets the maximum gain the digital compression stage may apply, in dB. A
|
||
|
// higher number corresponds to greater compression, while a value of 0
|
||
|
// will leave the signal uncompressed. Limited to [0, 90].
|
||
|
// For updates after APM setup, use a RuntimeSetting instead.
|
||
|
int compression_gain_db = 9;
|
||
|
// When enabled, the compression stage will hard limit the signal to the
|
||
|
// target level. Otherwise, the signal will be compressed but not limited
|
||
|
// above the target level.
|
||
|
bool enable_limiter = true;
|
||
|
|
||
|
// Enables the analog gain controller functionality.
|
||
|
struct AnalogGainController {
|
||
|
bool enabled = true;
|
||
|
// TODO(bugs.webrtc.org/7494): Deprecated. Stop using and remove.
|
||
|
int startup_min_volume = 0;
|
||
|
// Lowest analog microphone level that will be applied in response to
|
||
|
// clipping.
|
||
|
int clipped_level_min = 70;
|
||
|
// If true, an adaptive digital gain is applied.
|
||
|
bool enable_digital_adaptive = true;
|
||
|
// Amount the microphone level is lowered with every clipping event.
|
||
|
// Limited to (0, 255].
|
||
|
int clipped_level_step = 15;
|
||
|
// Proportion of clipped samples required to declare a clipping event.
|
||
|
// Limited to (0.f, 1.f).
|
||
|
float clipped_ratio_threshold = 0.1f;
|
||
|
// Time in frames to wait after a clipping event before checking again.
|
||
|
// Limited to values higher than 0.
|
||
|
int clipped_wait_frames = 300;
|
||
|
|
||
|
// Enables clipping prediction functionality.
|
||
|
struct ClippingPredictor {
|
||
|
bool enabled = false;
|
||
|
enum Mode {
|
||
|
// Clipping event prediction mode with fixed step estimation.
|
||
|
kClippingEventPrediction,
|
||
|
// Clipped peak estimation mode with adaptive step estimation.
|
||
|
kAdaptiveStepClippingPeakPrediction,
|
||
|
// Clipped peak estimation mode with fixed step estimation.
|
||
|
kFixedStepClippingPeakPrediction,
|
||
|
};
|
||
|
Mode mode = kClippingEventPrediction;
|
||
|
// Number of frames in the sliding analysis window.
|
||
|
int window_length = 5;
|
||
|
// Number of frames in the sliding reference window.
|
||
|
int reference_window_length = 5;
|
||
|
// Reference window delay (unit: number of frames).
|
||
|
int reference_window_delay = 5;
|
||
|
// Clipping prediction threshold (dBFS).
|
||
|
float clipping_threshold = -1.0f;
|
||
|
// Crest factor drop threshold (dB).
|
||
|
float crest_factor_margin = 3.0f;
|
||
|
// If true, the recommended clipped level step is used to modify the
|
||
|
// analog gain. Otherwise, the predictor runs without affecting the
|
||
|
// analog gain.
|
||
|
bool use_predicted_step = true;
|
||
|
} clipping_predictor;
|
||
|
} analog_gain_controller;
|
||
|
} gain_controller1;
|
||
|
|
||
|
// Parameters for AGC2, an Automatic Gain Control (AGC) sub-module which
|
||
|
// replaces the AGC sub-module parametrized by `gain_controller1`.
|
||
|
// AGC2 brings the captured audio signal to the desired level by combining
|
||
|
// three different controllers (namely, input volume controller, adapative
|
||
|
// digital controller and fixed digital controller) and a limiter.
|
||
|
// TODO(bugs.webrtc.org:7494): Name `GainController` when AGC1 removed.
|
||
|
struct RTC_EXPORT GainController2 {
|
||
|
bool operator==(const GainController2& rhs) const;
|
||
|
bool operator!=(const GainController2& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
|
||
|
// AGC2 must be created if and only if `enabled` is true.
|
||
|
bool enabled = false;
|
||
|
|
||
|
// Parameters for the input volume controller, which adjusts the input
|
||
|
// volume applied when the audio is captured (e.g., microphone volume on
|
||
|
// a soundcard, input volume on HAL).
|
||
|
struct InputVolumeController {
|
||
|
bool operator==(const InputVolumeController& rhs) const;
|
||
|
bool operator!=(const InputVolumeController& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
bool enabled = false;
|
||
|
} input_volume_controller;
|
||
|
|
||
|
// Parameters for the adaptive digital controller, which adjusts and
|
||
|
// applies a digital gain after echo cancellation and after noise
|
||
|
// suppression.
|
||
|
struct RTC_EXPORT AdaptiveDigital {
|
||
|
bool operator==(const AdaptiveDigital& rhs) const;
|
||
|
bool operator!=(const AdaptiveDigital& rhs) const {
|
||
|
return !(*this == rhs);
|
||
|
}
|
||
|
bool enabled = false;
|
||
|
float headroom_db = 5.0f;
|
||
|
float max_gain_db = 50.0f;
|
||
|
float initial_gain_db = 15.0f;
|
||
|
float max_gain_change_db_per_second = 6.0f;
|
||
|
float max_output_noise_level_dbfs = -50.0f;
|
||
|
} adaptive_digital;
|
||
|
|
||
|
// Parameters for the fixed digital controller, which applies a fixed
|
||
|
// digital gain after the adaptive digital controller and before the
|
||
|
// limiter.
|
||
|
struct FixedDigital {
|
||
|
// By setting `gain_db` to a value greater than zero, the limiter can be
|
||
|
// turned into a compressor that first applies a fixed gain.
|
||
|
float gain_db = 0.0f;
|
||
|
} fixed_digital;
|
||
|
} gain_controller2;
|
||
|
|
||
|
std::string ToString() const;
|
||
|
};
|
||
|
|
||
|
// Specifies the properties of a setting to be passed to AudioProcessing at
|
||
|
// runtime.
|
||
|
class RuntimeSetting {
|
||
|
public:
|
||
|
enum class Type {
|
||
|
kNotSpecified,
|
||
|
kCapturePreGain,
|
||
|
kCaptureCompressionGain,
|
||
|
kCaptureFixedPostGain,
|
||
|
kPlayoutVolumeChange,
|
||
|
kCustomRenderProcessingRuntimeSetting,
|
||
|
kPlayoutAudioDeviceChange,
|
||
|
kCapturePostGain,
|
||
|
kCaptureOutputUsed
|
||
|
};
|
||
|
|
||
|
// Play-out audio device properties.
|
||
|
struct PlayoutAudioDeviceInfo {
|
||
|
int id; // Identifies the audio device.
|
||
|
int max_volume; // Maximum play-out volume.
|
||
|
};
|
||
|
|
||
|
RuntimeSetting() : type_(Type::kNotSpecified), value_(0.0f) {}
|
||
|
~RuntimeSetting() = default;
|
||
|
|
||
|
static RuntimeSetting CreateCapturePreGain(float gain) {
|
||
|
return {Type::kCapturePreGain, gain};
|
||
|
}
|
||
|
|
||
|
static RuntimeSetting CreateCapturePostGain(float gain) {
|
||
|
return {Type::kCapturePostGain, gain};
|
||
|
}
|
||
|
|
||
|
// Corresponds to Config::GainController1::compression_gain_db, but for
|
||
|
// runtime configuration.
|
||
|
static RuntimeSetting CreateCompressionGainDb(int gain_db) {
|
||
|
RTC_DCHECK_GE(gain_db, 0);
|
||
|
RTC_DCHECK_LE(gain_db, 90);
|
||
|
return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)};
|
||
|
}
|
||
|
|
||
|
// Corresponds to Config::GainController2::fixed_digital::gain_db, but for
|
||
|
// runtime configuration.
|
||
|
static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) {
|
||
|
RTC_DCHECK_GE(gain_db, 0.0f);
|
||
|
RTC_DCHECK_LE(gain_db, 90.0f);
|
||
|
return {Type::kCaptureFixedPostGain, gain_db};
|
||
|
}
|
||
|
|
||
|
// Creates a runtime setting to notify play-out (aka render) audio device
|
||
|
// changes.
|
||
|
static RuntimeSetting CreatePlayoutAudioDeviceChange(
|
||
|
PlayoutAudioDeviceInfo audio_device) {
|
||
|
return {Type::kPlayoutAudioDeviceChange, audio_device};
|
||
|
}
|
||
|
|
||
|
// Creates a runtime setting to notify play-out (aka render) volume changes.
|
||
|
// `volume` is the unnormalized volume, the maximum of which
|
||
|
static RuntimeSetting CreatePlayoutVolumeChange(int volume) {
|
||
|
return {Type::kPlayoutVolumeChange, volume};
|
||
|
}
|
||
|
|
||
|
static RuntimeSetting CreateCustomRenderSetting(float payload) {
|
||
|
return {Type::kCustomRenderProcessingRuntimeSetting, payload};
|
||
|
}
|
||
|
|
||
|
static RuntimeSetting CreateCaptureOutputUsedSetting(
|
||
|
bool capture_output_used) {
|
||
|
return {Type::kCaptureOutputUsed, capture_output_used};
|
||
|
}
|
||
|
|
||
|
Type type() const { return type_; }
|
||
|
// Getters do not return a value but instead modify the argument to protect
|
||
|
// from implicit casting.
|
||
|
void GetFloat(float* value) const {
|
||
|
RTC_DCHECK(value);
|
||
|
*value = value_.float_value;
|
||
|
}
|
||
|
void GetInt(int* value) const {
|
||
|
RTC_DCHECK(value);
|
||
|
*value = value_.int_value;
|
||
|
}
|
||
|
void GetBool(bool* value) const {
|
||
|
RTC_DCHECK(value);
|
||
|
*value = value_.bool_value;
|
||
|
}
|
||
|
void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const {
|
||
|
RTC_DCHECK(value);
|
||
|
*value = value_.playout_audio_device_info;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
RuntimeSetting(Type id, float value) : type_(id), value_(value) {}
|
||
|
RuntimeSetting(Type id, int value) : type_(id), value_(value) {}
|
||
|
RuntimeSetting(Type id, PlayoutAudioDeviceInfo value)
|
||
|
: type_(id), value_(value) {}
|
||
|
Type type_;
|
||
|
union U {
|
||
|
U() {}
|
||
|
U(int value) : int_value(value) {}
|
||
|
U(float value) : float_value(value) {}
|
||
|
U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {}
|
||
|
float float_value;
|
||
|
int int_value;
|
||
|
bool bool_value;
|
||
|
PlayoutAudioDeviceInfo playout_audio_device_info;
|
||
|
} value_;
|
||
|
};
|
||
|
|
||
|
~AudioProcessing() override {}
|
||
|
|
||
|
// Initializes internal states, while retaining all user settings. This
|
||
|
// should be called before beginning to process a new audio stream. However,
|
||
|
// it is not necessary to call before processing the first stream after
|
||
|
// creation.
|
||
|
//
|
||
|
// It is also not necessary to call if the audio parameters (sample
|
||
|
// rate and number of channels) have changed. Passing updated parameters
|
||
|
// directly to `ProcessStream()` and `ProcessReverseStream()` is permissible.
|
||
|
// If the parameters are known at init-time though, they may be provided.
|
||
|
// TODO(webrtc:5298): Change to return void.
|
||
|
virtual int Initialize() = 0;
|
||
|
|
||
|
// The int16 interfaces require:
|
||
|
// - only `NativeRate`s be used
|
||
|
// - that the input, output and reverse rates must match
|
||
|
// - that `processing_config.output_stream()` matches
|
||
|
// `processing_config.input_stream()`.
|
||
|
//
|
||
|
// The float interfaces accept arbitrary rates and support differing input and
|
||
|
// output layouts, but the output must have either one channel or the same
|
||
|
// number of channels as the input.
|
||
|
virtual int Initialize(const ProcessingConfig& processing_config) = 0;
|
||
|
|
||
|
// TODO(peah): This method is a temporary solution used to take control
|
||
|
// over the parameters in the audio processing module and is likely to change.
|
||
|
virtual void ApplyConfig(const Config& config) = 0;
|
||
|
|
||
|
// TODO(ajm): Only intended for internal use. Make private and friend the
|
||
|
// necessary classes?
|
||
|
virtual int proc_sample_rate_hz() const = 0;
|
||
|
virtual int proc_split_sample_rate_hz() const = 0;
|
||
|
virtual size_t num_input_channels() const = 0;
|
||
|
virtual size_t num_proc_channels() const = 0;
|
||
|
virtual size_t num_output_channels() const = 0;
|
||
|
virtual size_t num_reverse_channels() const = 0;
|
||
|
|
||
|
// Set to true when the output of AudioProcessing will be muted or in some
|
||
|
// other way not used. Ideally, the captured audio would still be processed,
|
||
|
// but some components may change behavior based on this information.
|
||
|
// Default false. This method takes a lock. To achieve this in a lock-less
|
||
|
// manner the PostRuntimeSetting can instead be used.
|
||
|
virtual void set_output_will_be_muted(bool muted) = 0;
|
||
|
|
||
|
// Enqueues a runtime setting.
|
||
|
virtual void SetRuntimeSetting(RuntimeSetting setting) = 0;
|
||
|
|
||
|
// Enqueues a runtime setting. Returns a bool indicating whether the
|
||
|
// enqueueing was successfull.
|
||
|
virtual bool PostRuntimeSetting(RuntimeSetting setting) = 0;
|
||
|
|
||
|
// Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio as
|
||
|
// specified in `input_config` and `output_config`. `src` and `dest` may use
|
||
|
// the same memory, if desired.
|
||
|
virtual int ProcessStream(const int16_t* const src,
|
||
|
const StreamConfig& input_config,
|
||
|
const StreamConfig& output_config,
|
||
|
int16_t* const dest) = 0;
|
||
|
|
||
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
|
||
|
// `src` points to a channel buffer, arranged according to `input_stream`. At
|
||
|
// output, the channels will be arranged according to `output_stream` in
|
||
|
// `dest`.
|
||
|
//
|
||
|
// The output must have one channel or as many channels as the input. `src`
|
||
|
// and `dest` may use the same memory, if desired.
|
||
|
virtual int ProcessStream(const float* const* src,
|
||
|
const StreamConfig& input_config,
|
||
|
const StreamConfig& output_config,
|
||
|
float* const* dest) = 0;
|
||
|
|
||
|
// Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio for
|
||
|
// the reverse direction audio stream as specified in `input_config` and
|
||
|
// `output_config`. `src` and `dest` may use the same memory, if desired.
|
||
|
virtual int ProcessReverseStream(const int16_t* const src,
|
||
|
const StreamConfig& input_config,
|
||
|
const StreamConfig& output_config,
|
||
|
int16_t* const dest) = 0;
|
||
|
|
||
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
|
||
|
// `data` points to a channel buffer, arranged according to `reverse_config`.
|
||
|
virtual int ProcessReverseStream(const float* const* src,
|
||
|
const StreamConfig& input_config,
|
||
|
const StreamConfig& output_config,
|
||
|
float* const* dest) = 0;
|
||
|
|
||
|
// Accepts deinterleaved float audio with the range [-1, 1]. Each element
|
||
|
// of `data` points to a channel buffer, arranged according to
|
||
|
// `reverse_config`.
|
||
|
virtual int AnalyzeReverseStream(const float* const* data,
|
||
|
const StreamConfig& reverse_config) = 0;
|
||
|
|
||
|
// Returns the most recently produced ~10 ms of the linear AEC output at a
|
||
|
// rate of 16 kHz. If there is more than one capture channel, a mono
|
||
|
// representation of the input is returned. Returns true/false to indicate
|
||
|
// whether an output returned.
|
||
|
virtual bool GetLinearAecOutput(
|
||
|
rtc::ArrayView<std::array<float, 160>> linear_output) const = 0;
|
||
|
|
||
|
// This must be called prior to ProcessStream() if and only if adaptive analog
|
||
|
// gain control is enabled, to pass the current analog level from the audio
|
||
|
// HAL. Must be within the range [0, 255].
|
||
|
virtual void set_stream_analog_level(int level) = 0;
|
||
|
|
||
|
// When an analog mode is set, this should be called after
|
||
|
// `set_stream_analog_level()` and `ProcessStream()` to obtain the recommended
|
||
|
// new analog level for the audio HAL. It is the user's responsibility to
|
||
|
// apply this level.
|
||
|
virtual int recommended_stream_analog_level() const = 0;
|
||
|
|
||
|
// This must be called if and only if echo processing is enabled.
|
||
|
//
|
||
|
// Sets the `delay` in ms between ProcessReverseStream() receiving a far-end
|
||
|
// frame and ProcessStream() receiving a near-end frame containing the
|
||
|
// corresponding echo. On the client-side this can be expressed as
|
||
|
// delay = (t_render - t_analyze) + (t_process - t_capture)
|
||
|
// where,
|
||
|
// - t_analyze is the time a frame is passed to ProcessReverseStream() and
|
||
|
// t_render is the time the first sample of the same frame is rendered by
|
||
|
// the audio hardware.
|
||
|
// - t_capture is the time the first sample of a frame is captured by the
|
||
|
// audio hardware and t_process is the time the same frame is passed to
|
||
|
// ProcessStream().
|
||
|
virtual int set_stream_delay_ms(int delay) = 0;
|
||
|
virtual int stream_delay_ms() const = 0;
|
||
|
|
||
|
// Call to signal that a key press occurred (true) or did not occur (false)
|
||
|
// with this chunk of audio.
|
||
|
virtual void set_stream_key_pressed(bool key_pressed) = 0;
|
||
|
|
||
|
// Creates and attaches an webrtc::AecDump for recording debugging
|
||
|
// information.
|
||
|
// The `worker_queue` may not be null and must outlive the created
|
||
|
// AecDump instance. |max_log_size_bytes == -1| means the log size
|
||
|
// will be unlimited. `handle` may not be null. The AecDump takes
|
||
|
// responsibility for `handle` and closes it in the destructor. A
|
||
|
// return value of true indicates that the file has been
|
||
|
// sucessfully opened, while a value of false indicates that
|
||
|
// opening the file failed.
|
||
|
virtual bool CreateAndAttachAecDump(
|
||
|
absl::string_view file_name,
|
||
|
int64_t max_log_size_bytes,
|
||
|
absl::Nonnull<TaskQueueBase*> worker_queue) = 0;
|
||
|
virtual bool CreateAndAttachAecDump(
|
||
|
absl::Nonnull<FILE*> handle,
|
||
|
int64_t max_log_size_bytes,
|
||
|
absl::Nonnull<TaskQueueBase*> worker_queue) = 0;
|
||
|
|
||
|
// TODO(webrtc:5298) Deprecated variant.
|
||
|
// Attaches provided webrtc::AecDump for recording debugging
|
||
|
// information. Log file and maximum file size logic is supposed to
|
||
|
// be handled by implementing instance of AecDump. Calling this
|
||
|
// method when another AecDump is attached resets the active AecDump
|
||
|
// with a new one. This causes the d-tor of the earlier AecDump to
|
||
|
// be called. The d-tor call may block until all pending logging
|
||
|
// tasks are completed.
|
||
|
virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0;
|
||
|
|
||
|
// If no AecDump is attached, this has no effect. If an AecDump is
|
||
|
// attached, it's destructor is called. The d-tor may block until
|
||
|
// all pending logging tasks are completed.
|
||
|
virtual void DetachAecDump() = 0;
|
||
|
|
||
|
// Get audio processing statistics.
|
||
|
virtual AudioProcessingStats GetStatistics() = 0;
|
||
|
// TODO(webrtc:5298) Deprecated variant. The `has_remote_tracks` argument
|
||
|
// should be set if there are active remote tracks (this would usually be true
|
||
|
// during a call). If there are no remote tracks some of the stats will not be
|
||
|
// set by AudioProcessing, because they only make sense if there is at least
|
||
|
// one remote track.
|
||
|
virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0;
|
||
|
|
||
|
// Returns the last applied configuration.
|
||
|
virtual AudioProcessing::Config GetConfig() const = 0;
|
||
|
|
||
|
enum Error {
|
||
|
// Fatal errors.
|
||
|
kNoError = 0,
|
||
|
kUnspecifiedError = -1,
|
||
|
kCreationFailedError = -2,
|
||
|
kUnsupportedComponentError = -3,
|
||
|
kUnsupportedFunctionError = -4,
|
||
|
kNullPointerError = -5,
|
||
|
kBadParameterError = -6,
|
||
|
kBadSampleRateError = -7,
|
||
|
kBadDataLengthError = -8,
|
||
|
kBadNumberChannelsError = -9,
|
||
|
kFileError = -10,
|
||
|
kStreamParameterNotSetError = -11,
|
||
|
kNotEnabledError = -12,
|
||
|
|
||
|
// Warnings are non-fatal.
|
||
|
// This results when a set_stream_ parameter is out of range. Processing
|
||
|
// will continue, but the parameter may have been truncated.
|
||
|
kBadStreamParameterWarning = -13
|
||
|
};
|
||
|
|
||
|
// Native rates supported by the integer interfaces.
|
||
|
enum NativeRate {
|
||
|
kSampleRate8kHz = 8000,
|
||
|
kSampleRate16kHz = 16000,
|
||
|
kSampleRate32kHz = 32000,
|
||
|
kSampleRate48kHz = 48000
|
||
|
};
|
||
|
|
||
|
// TODO(kwiberg): We currently need to support a compiler (Visual C++) that
|
||
|
// complains if we don't explicitly state the size of the array here. Remove
|
||
|
// the size when that's no longer the case.
|
||
|
static constexpr int kNativeSampleRatesHz[4] = {
|
||
|
kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz};
|
||
|
static constexpr size_t kNumNativeSampleRates =
|
||
|
arraysize(kNativeSampleRatesHz);
|
||
|
static constexpr int kMaxNativeSampleRateHz =
|
||
|
kNativeSampleRatesHz[kNumNativeSampleRates - 1];
|
||
|
|
||
|
// APM processes audio in chunks of about 10 ms. See GetFrameSize() for
|
||
|
// details.
|
||
|
static constexpr int kChunkSizeMs = 10;
|
||
|
|
||
|
// Returns floor(sample_rate_hz/100): the number of samples per channel used
|
||
|
// as input and output to the audio processing module in calls to
|
||
|
// ProcessStream, ProcessReverseStream, AnalyzeReverseStream, and
|
||
|
// GetLinearAecOutput.
|
||
|
//
|
||
|
// This is exactly 10 ms for sample rates divisible by 100. For example:
|
||
|
// - 48000 Hz (480 samples per channel),
|
||
|
// - 44100 Hz (441 samples per channel),
|
||
|
// - 16000 Hz (160 samples per channel).
|
||
|
//
|
||
|
// Sample rates not divisible by 100 are received/produced in frames of
|
||
|
// approximately 10 ms. For example:
|
||
|
// - 22050 Hz (220 samples per channel, or ~9.98 ms per frame),
|
||
|
// - 11025 Hz (110 samples per channel, or ~9.98 ms per frame).
|
||
|
// These nondivisible sample rates yield lower audio quality compared to
|
||
|
// multiples of 100. Internal resampling to 10 ms frames causes a simulated
|
||
|
// clock drift effect which impacts the performance of (for example) echo
|
||
|
// cancellation.
|
||
|
static int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; }
|
||
|
};
|
||
|
|
||
|
// Experimental interface for a custom analysis submodule.
|
||
|
class CustomAudioAnalyzer {
|
||
|
public:
|
||
|
// (Re-) Initializes the submodule.
|
||
|
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
|
||
|
// Analyzes the given capture or render signal.
|
||
|
virtual void Analyze(const AudioBuffer* audio) = 0;
|
||
|
// Returns a string representation of the module state.
|
||
|
virtual std::string ToString() const = 0;
|
||
|
|
||
|
virtual ~CustomAudioAnalyzer() {}
|
||
|
};
|
||
|
|
||
|
// Interface for a custom processing submodule.
|
||
|
class CustomProcessing {
|
||
|
public:
|
||
|
// (Re-)Initializes the submodule.
|
||
|
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
|
||
|
// Processes the given capture or render signal.
|
||
|
virtual void Process(AudioBuffer* audio) = 0;
|
||
|
// Returns a string representation of the module state.
|
||
|
virtual std::string ToString() const = 0;
|
||
|
// Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual
|
||
|
// after updating dependencies.
|
||
|
virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting);
|
||
|
|
||
|
virtual ~CustomProcessing() {}
|
||
|
};
|
||
|
|
||
|
class RTC_EXPORT AudioProcessingBuilder {
|
||
|
public:
|
||
|
AudioProcessingBuilder();
|
||
|
AudioProcessingBuilder(const AudioProcessingBuilder&) = delete;
|
||
|
AudioProcessingBuilder& operator=(const AudioProcessingBuilder&) = delete;
|
||
|
~AudioProcessingBuilder();
|
||
|
|
||
|
// Sets the APM configuration.
|
||
|
AudioProcessingBuilder& SetConfig(const AudioProcessing::Config& config) {
|
||
|
config_ = config;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Sets the echo controller factory to inject when APM is created.
|
||
|
AudioProcessingBuilder& SetEchoControlFactory(
|
||
|
std::unique_ptr<EchoControlFactory> echo_control_factory) {
|
||
|
echo_control_factory_ = std::move(echo_control_factory);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Sets the capture post-processing sub-module to inject when APM is created.
|
||
|
AudioProcessingBuilder& SetCapturePostProcessing(
|
||
|
std::unique_ptr<CustomProcessing> capture_post_processing) {
|
||
|
capture_post_processing_ = std::move(capture_post_processing);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Sets the render pre-processing sub-module to inject when APM is created.
|
||
|
AudioProcessingBuilder& SetRenderPreProcessing(
|
||
|
std::unique_ptr<CustomProcessing> render_pre_processing) {
|
||
|
render_pre_processing_ = std::move(render_pre_processing);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Sets the echo detector to inject when APM is created.
|
||
|
AudioProcessingBuilder& SetEchoDetector(
|
||
|
rtc::scoped_refptr<EchoDetector> echo_detector) {
|
||
|
echo_detector_ = std::move(echo_detector);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Sets the capture analyzer sub-module to inject when APM is created.
|
||
|
AudioProcessingBuilder& SetCaptureAnalyzer(
|
||
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) {
|
||
|
capture_analyzer_ = std::move(capture_analyzer);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Creates an APM instance with the specified config or the default one if
|
||
|
// unspecified. Injects the specified components transferring the ownership
|
||
|
// to the newly created APM instance - i.e., except for the config, the
|
||
|
// builder is reset to its initial state.
|
||
|
rtc::scoped_refptr<AudioProcessing> Create();
|
||
|
|
||
|
private:
|
||
|
AudioProcessing::Config config_;
|
||
|
std::unique_ptr<EchoControlFactory> echo_control_factory_;
|
||
|
std::unique_ptr<CustomProcessing> capture_post_processing_;
|
||
|
std::unique_ptr<CustomProcessing> render_pre_processing_;
|
||
|
rtc::scoped_refptr<EchoDetector> echo_detector_;
|
||
|
std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_;
|
||
|
};
|
||
|
|
||
|
class StreamConfig {
|
||
|
public:
|
||
|
// sample_rate_hz: The sampling rate of the stream.
|
||
|
// num_channels: The number of audio channels in the stream.
|
||
|
StreamConfig(int sample_rate_hz = 0,
|
||
|
size_t num_channels = 0) // NOLINT(runtime/explicit)
|
||
|
: sample_rate_hz_(sample_rate_hz),
|
||
|
num_channels_(num_channels),
|
||
|
num_frames_(calculate_frames(sample_rate_hz)) {}
|
||
|
|
||
|
void set_sample_rate_hz(int value) {
|
||
|
sample_rate_hz_ = value;
|
||
|
num_frames_ = calculate_frames(value);
|
||
|
}
|
||
|
void set_num_channels(size_t value) { num_channels_ = value; }
|
||
|
|
||
|
int sample_rate_hz() const { return sample_rate_hz_; }
|
||
|
|
||
|
// The number of channels in the stream.
|
||
|
size_t num_channels() const { return num_channels_; }
|
||
|
|
||
|
size_t num_frames() const { return num_frames_; }
|
||
|
size_t num_samples() const { return num_channels_ * num_frames_; }
|
||
|
|
||
|
bool operator==(const StreamConfig& other) const {
|
||
|
return sample_rate_hz_ == other.sample_rate_hz_ &&
|
||
|
num_channels_ == other.num_channels_;
|
||
|
}
|
||
|
|
||
|
bool operator!=(const StreamConfig& other) const { return !(*this == other); }
|
||
|
|
||
|
private:
|
||
|
static size_t calculate_frames(int sample_rate_hz) {
|
||
|
return static_cast<size_t>(AudioProcessing::GetFrameSize(sample_rate_hz));
|
||
|
}
|
||
|
|
||
|
int sample_rate_hz_;
|
||
|
size_t num_channels_;
|
||
|
size_t num_frames_;
|
||
|
};
|
||
|
|
||
|
class ProcessingConfig {
|
||
|
public:
|
||
|
enum StreamName {
|
||
|
kInputStream,
|
||
|
kOutputStream,
|
||
|
kReverseInputStream,
|
||
|
kReverseOutputStream,
|
||
|
kNumStreamNames,
|
||
|
};
|
||
|
|
||
|
const StreamConfig& input_stream() const {
|
||
|
return streams[StreamName::kInputStream];
|
||
|
}
|
||
|
const StreamConfig& output_stream() const {
|
||
|
return streams[StreamName::kOutputStream];
|
||
|
}
|
||
|
const StreamConfig& reverse_input_stream() const {
|
||
|
return streams[StreamName::kReverseInputStream];
|
||
|
}
|
||
|
const StreamConfig& reverse_output_stream() const {
|
||
|
return streams[StreamName::kReverseOutputStream];
|
||
|
}
|
||
|
|
||
|
StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
|
||
|
StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
|
||
|
StreamConfig& reverse_input_stream() {
|
||
|
return streams[StreamName::kReverseInputStream];
|
||
|
}
|
||
|
StreamConfig& reverse_output_stream() {
|
||
|
return streams[StreamName::kReverseOutputStream];
|
||
|
}
|
||
|
|
||
|
bool operator==(const ProcessingConfig& other) const {
|
||
|
for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
|
||
|
if (this->streams[i] != other.streams[i]) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool operator!=(const ProcessingConfig& other) const {
|
||
|
return !(*this == other);
|
||
|
}
|
||
|
|
||
|
StreamConfig streams[StreamName::kNumStreamNames];
|
||
|
};
|
||
|
|
||
|
// Interface for an echo detector submodule.
|
||
|
class EchoDetector : public RefCountInterface {
|
||
|
public:
|
||
|
// (Re-)Initializes the submodule.
|
||
|
virtual void Initialize(int capture_sample_rate_hz,
|
||
|
int num_capture_channels,
|
||
|
int render_sample_rate_hz,
|
||
|
int num_render_channels) = 0;
|
||
|
|
||
|
// Analysis (not changing) of the first channel of the render signal.
|
||
|
virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0;
|
||
|
|
||
|
// Analysis (not changing) of the capture signal.
|
||
|
virtual void AnalyzeCaptureAudio(
|
||
|
rtc::ArrayView<const float> capture_audio) = 0;
|
||
|
|
||
|
struct Metrics {
|
||
|
absl::optional<double> echo_likelihood;
|
||
|
absl::optional<double> echo_likelihood_recent_max;
|
||
|
};
|
||
|
|
||
|
// Collect current metrics from the echo detector.
|
||
|
virtual Metrics GetMetrics() const = 0;
|
||
|
};
|
||
|
|
||
|
} // namespace webrtc
|
||
|
|
||
|
#endif // API_AUDIO_AUDIO_PROCESSING_H_
|