FaceAccess/VocieProcess/common_audio/resampler/sinc_resampler.cc

367 lines
14 KiB
C++
Raw Normal View History

2024-09-05 09:59:28 +08:00
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Modified from the Chromium original:
// src/media/base/sinc_resampler.cc
// Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
// and r4_ will move after the first load):
//
// |----------------|-----------------------------------------|----------------|
//
// request_frames_
// <--------------------------------------------------------->
// r0_ (during first load)
//
// kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
// <---------------> <---------------> <---------------> <--------------->
// r1_ r2_ r3_ r4_
//
// block_size_ == r4_ - r2_
// <--------------------------------------->
//
// request_frames_
// <------------------ ... ----------------->
// r0_ (during second load)
//
// On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
// and block_size_ are reinitialized via step (3) in the algorithm below.
//
// These new regions remain constant until a Flush() occurs. While complicated,
// this allows us to reduce jitter by always requesting the same amount from the
// provided callback.
//
// The algorithm:
//
// 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
// there's enough room to read request_frames_ from the callback into region
// r0_ (which will move between the first and subsequent passes).
//
// 2) Let r1_, r2_ each represent half the kernel centered around r0_:
//
// r0_ = input_buffer_ + kKernelSize / 2
// r1_ = input_buffer_
// r2_ = r0_
//
// r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
// size. r1_ must be zero initialized to avoid convolution with garbage (see
// step (5) for why).
//
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
// r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
//
// r3_ = r0_ + request_frames_ - kKernelSize
// r4_ = r0_ + request_frames_ - kKernelSize / 2
// block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
//
// 4) Consume request_frames_ frames into r0_.
//
// 5) Position kernel centered at start of r2_ and generate output frames until
// the kernel is centered at the start of r4_ or we've finished generating
// all the output frames.
//
// 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
//
// 7) If we're on the second load, in order to avoid overwriting the frames we
// just wrapped from r4_ we need to slide r0_ to the right by the size of
// r4_, which is kKernelSize / 2:
//
// r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
//
// r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
//
// 8) Else, if we're not on the second load, goto (4).
//
// Note: we're glossing over how the sub-sample handling works with
// `virtual_source_idx_`, etc.
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "common_audio/resampler/sinc_resampler.h"
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <limits>
#include "rtc_base/checks.h"
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h" // kSSE2, WebRtc_G...
namespace webrtc {
namespace {
double SincScaleFactor(double io_ratio) {
// `sinc_scale_factor` is basically the normalized cutoff frequency of the
// low-pass filter.
double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
// The sinc function is an idealized brick-wall filter, but since we're
// windowing it the transition from pass to stop does not happen right away.
// So we should adjust the low pass filter cutoff slightly downward to avoid
// some aliasing at the very high-end.
// TODO(crogers): this value is empirical and to be more exact should vary
// depending on kKernelSize.
sinc_scale_factor *= 0.9;
return sinc_scale_factor;
}
} // namespace
const size_t SincResampler::kKernelSize;
// If we know the minimum architecture at compile time, avoid CPU detection.
void SincResampler::InitializeCPUSpecificFeatures() {
#if defined(WEBRTC_HAS_NEON)
convolve_proc_ = Convolve_NEON;
#elif defined(WEBRTC_ARCH_X86_FAMILY)
// Using AVX2 instead of SSE2 when AVX2/FMA3 supported.
if (GetCPUInfo(kAVX2) && GetCPUInfo(kFMA3))
convolve_proc_ = Convolve_AVX2;
else if (GetCPUInfo(kSSE2))
convolve_proc_ = Convolve_SSE;
else
convolve_proc_ = Convolve_C;
#else
// Unknown architecture.
convolve_proc_ = Convolve_C;
#endif
}
SincResampler::SincResampler(double io_sample_rate_ratio,
size_t request_frames,
SincResamplerCallback* read_cb)
: io_sample_rate_ratio_(io_sample_rate_ratio),
read_cb_(read_cb),
request_frames_(request_frames),
input_buffer_size_(request_frames_ + kKernelSize),
// Create input buffers with a 32-byte alignment for SIMD optimizations.
kernel_storage_(static_cast<float*>(
AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
kernel_pre_sinc_storage_(static_cast<float*>(
AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
kernel_window_storage_(static_cast<float*>(
AlignedMalloc(sizeof(float) * kKernelStorageSize, 32))),
input_buffer_(static_cast<float*>(
AlignedMalloc(sizeof(float) * input_buffer_size_, 32))),
convolve_proc_(nullptr),
r1_(input_buffer_.get()),
r2_(input_buffer_.get() + kKernelSize / 2) {
InitializeCPUSpecificFeatures();
RTC_DCHECK(convolve_proc_);
RTC_DCHECK_GT(request_frames_, 0);
Flush();
RTC_DCHECK_GT(block_size_, kKernelSize);
memset(kernel_storage_.get(), 0,
sizeof(*kernel_storage_.get()) * kKernelStorageSize);
memset(kernel_pre_sinc_storage_.get(), 0,
sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
memset(kernel_window_storage_.get(), 0,
sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
InitializeKernel();
}
SincResampler::~SincResampler() {}
void SincResampler::UpdateRegions(bool second_load) {
// Setup various region pointers in the buffer (see diagram above). If we're
// on the second load we need to slide r0_ to the right by kKernelSize / 2.
r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
r3_ = r0_ + request_frames_ - kKernelSize;
r4_ = r0_ + request_frames_ - kKernelSize / 2;
block_size_ = r4_ - r2_;
// r1_ at the beginning of the buffer.
RTC_DCHECK_EQ(r1_, input_buffer_.get());
// r1_ left of r2_, r4_ left of r3_ and size correct.
RTC_DCHECK_EQ(r2_ - r1_, r4_ - r3_);
// r2_ left of r3.
RTC_DCHECK_LT(r2_, r3_);
}
void SincResampler::InitializeKernel() {
// Blackman window parameters.
static const double kAlpha = 0.16;
static const double kA0 = 0.5 * (1.0 - kAlpha);
static const double kA1 = 0.5;
static const double kA2 = 0.5 * kAlpha;
// Generates a set of windowed sinc() kernels.
// We generate a range of sub-sample offsets from 0.0 to 1.0.
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
const float subsample_offset =
static_cast<float>(offset_idx) / kKernelOffsetCount;
for (size_t i = 0; i < kKernelSize; ++i) {
const size_t idx = i + offset_idx * kKernelSize;
const float pre_sinc = static_cast<float>(
M_PI * (static_cast<int>(i) - static_cast<int>(kKernelSize / 2) -
subsample_offset));
kernel_pre_sinc_storage_[idx] = pre_sinc;
// Compute Blackman window, matching the offset of the sinc().
const float x = (i - subsample_offset) / kKernelSize;
const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) +
kA2 * cos(4.0 * M_PI * x));
kernel_window_storage_[idx] = window;
// Compute the sinc with offset, then window the sinc() function and store
// at the correct offset.
kernel_storage_[idx] = static_cast<float>(
window * ((pre_sinc == 0)
? sinc_scale_factor
: (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
}
}
}
void SincResampler::SetRatio(double io_sample_rate_ratio) {
if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
std::numeric_limits<double>::epsilon()) {
return;
}
io_sample_rate_ratio_ = io_sample_rate_ratio;
// Optimize reinitialization by reusing values which are independent of
// `sinc_scale_factor`. Provides a 3x speedup.
const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
for (size_t i = 0; i < kKernelSize; ++i) {
const size_t idx = i + offset_idx * kKernelSize;
const float window = kernel_window_storage_[idx];
const float pre_sinc = kernel_pre_sinc_storage_[idx];
kernel_storage_[idx] = static_cast<float>(
window * ((pre_sinc == 0)
? sinc_scale_factor
: (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
}
}
}
void SincResampler::Resample(size_t frames, float* destination) {
size_t remaining_frames = frames;
// Step (1) -- Prime the input buffer at the start of the input stream.
if (!buffer_primed_ && remaining_frames) {
read_cb_->Run(request_frames_, r0_);
buffer_primed_ = true;
}
// Step (2) -- Resample! const what we can outside of the loop for speed. It
// actually has an impact on ARM performance. See inner loop comment below.
const double current_io_ratio = io_sample_rate_ratio_;
const float* const kernel_ptr = kernel_storage_.get();
while (remaining_frames) {
// `i` may be negative if the last Resample() call ended on an iteration
// that put `virtual_source_idx_` over the limit.
//
// Note: The loop construct here can severely impact performance on ARM
// or when built with clang. See https://codereview.chromium.org/18566009/
for (int i = static_cast<int>(
ceil((block_size_ - virtual_source_idx_) / current_io_ratio));
i > 0; --i) {
RTC_DCHECK_LT(virtual_source_idx_, block_size_);
// `virtual_source_idx_` lies in between two kernel offsets so figure out
// what they are.
const int source_idx = static_cast<int>(virtual_source_idx_);
const double subsample_remainder = virtual_source_idx_ - source_idx;
const double virtual_offset_idx =
subsample_remainder * kKernelOffsetCount;
const int offset_idx = static_cast<int>(virtual_offset_idx);
// We'll compute "convolutions" for the two kernels which straddle
// `virtual_source_idx_`.
const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
const float* const k2 = k1 + kKernelSize;
// Ensure `k1`, `k2` are 32-byte aligned for SIMD usage. Should always be
// true so long as kKernelSize is a multiple of 32.
RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k1) % 32);
RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k2) % 32);
// Initialize input pointer based on quantized `virtual_source_idx_`.
const float* const input_ptr = r1_ + source_idx;
// Figure out how much to weight each kernel's "convolution".
const double kernel_interpolation_factor =
virtual_offset_idx - offset_idx;
*destination++ =
convolve_proc_(input_ptr, k1, k2, kernel_interpolation_factor);
// Advance the virtual index.
virtual_source_idx_ += current_io_ratio;
if (!--remaining_frames)
return;
}
// Wrap back around to the start.
virtual_source_idx_ -= block_size_;
// Step (3) -- Copy r3_, r4_ to r1_, r2_.
// This wraps the last input frames back to the start of the buffer.
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
// Step (4) -- Reinitialize regions if necessary.
if (r0_ == r2_)
UpdateRegions(true);
// Step (5) -- Refresh the buffer with more input.
read_cb_->Run(request_frames_, r0_);
}
}
#undef CONVOLVE_FUNC
size_t SincResampler::ChunkSize() const {
return static_cast<size_t>(block_size_ / io_sample_rate_ratio_);
}
void SincResampler::Flush() {
virtual_source_idx_ = 0;
buffer_primed_ = false;
memset(input_buffer_.get(), 0,
sizeof(*input_buffer_.get()) * input_buffer_size_);
UpdateRegions(false);
}
float SincResampler::Convolve_C(const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
float sum1 = 0;
float sum2 = 0;
// Generate a single output sample. Unrolling this loop hurt performance in
// local testing.
size_t n = kKernelSize;
while (n--) {
sum1 += *input_ptr * *k1++;
sum2 += *input_ptr++ * *k2++;
}
// Linearly interpolate the two "convolutions".
return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
kernel_interpolation_factor * sum2);
}
} // namespace webrtc