709 lines
28 KiB
C++
709 lines
28 KiB
C++
|
/*
|
||
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "modules/audio_processing/utility/delay_estimator.h"
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "rtc_base/checks.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Number of right shifts for scaling is linearly depending on number of bits in
|
||
|
// the far-end binary spectrum.
|
||
|
static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
|
||
|
static const int kShiftsLinearSlope = 3;
|
||
|
|
||
|
static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
|
||
|
static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
|
||
|
static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
|
||
|
|
||
|
// Robust validation settings
|
||
|
static const float kHistogramMax = 3000.f;
|
||
|
static const float kLastHistogramMax = 250.f;
|
||
|
static const float kMinHistogramThreshold = 1.5f;
|
||
|
static const int kMinRequiredHits = 10;
|
||
|
static const int kMaxHitsWhenPossiblyNonCausal = 10;
|
||
|
static const int kMaxHitsWhenPossiblyCausal = 1000;
|
||
|
static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
|
||
|
static const float kFractionSlope = 0.05f;
|
||
|
static const float kMinFractionWhenPossiblyCausal = 0.5f;
|
||
|
static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
// Counts and returns number of bits of a 32-bit word.
|
||
|
static int BitCount(uint32_t u32) {
|
||
|
uint32_t tmp =
|
||
|
u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111);
|
||
|
tmp = ((tmp + (tmp >> 3)) & 030707070707);
|
||
|
tmp = (tmp + (tmp >> 6));
|
||
|
tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
|
||
|
|
||
|
return ((int)tmp);
|
||
|
}
|
||
|
|
||
|
// Compares the `binary_vector` with all rows of the `binary_matrix` and counts
|
||
|
// per row the number of times they have the same value.
|
||
|
//
|
||
|
// Inputs:
|
||
|
// - binary_vector : binary "vector" stored in a long
|
||
|
// - binary_matrix : binary "matrix" stored as a vector of long
|
||
|
// - matrix_size : size of binary "matrix"
|
||
|
//
|
||
|
// Output:
|
||
|
// - bit_counts : "Vector" stored as a long, containing for each
|
||
|
// row the number of times the matrix row and the
|
||
|
// input vector have the same value
|
||
|
//
|
||
|
static void BitCountComparison(uint32_t binary_vector,
|
||
|
const uint32_t* binary_matrix,
|
||
|
int matrix_size,
|
||
|
int32_t* bit_counts) {
|
||
|
int n = 0;
|
||
|
|
||
|
// Compare `binary_vector` with all rows of the `binary_matrix`
|
||
|
for (; n < matrix_size; n++) {
|
||
|
bit_counts[n] = (int32_t)BitCount(binary_vector ^ binary_matrix[n]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Collects necessary statistics for the HistogramBasedValidation(). This
|
||
|
// function has to be called prior to calling HistogramBasedValidation(). The
|
||
|
// statistics updated and used by the HistogramBasedValidation() are:
|
||
|
// 1. the number of `candidate_hits`, which states for how long we have had the
|
||
|
// same `candidate_delay`
|
||
|
// 2. the `histogram` of candidate delays over time. This histogram is
|
||
|
// weighted with respect to a reliability measure and time-varying to cope
|
||
|
// with possible delay shifts.
|
||
|
// For further description see commented code.
|
||
|
//
|
||
|
// Inputs:
|
||
|
// - candidate_delay : The delay to validate.
|
||
|
// - valley_depth_q14 : The cost function has a valley/minimum at the
|
||
|
// `candidate_delay` location. `valley_depth_q14` is the
|
||
|
// cost function difference between the minimum and
|
||
|
// maximum locations. The value is in the Q14 domain.
|
||
|
// - valley_level_q14 : Is the cost function value at the minimum, in Q14.
|
||
|
static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
|
||
|
int candidate_delay,
|
||
|
int32_t valley_depth_q14,
|
||
|
int32_t valley_level_q14) {
|
||
|
const float valley_depth = valley_depth_q14 * kQ14Scaling;
|
||
|
float decrease_in_last_set = valley_depth;
|
||
|
const int max_hits_for_slow_change = (candidate_delay < self->last_delay)
|
||
|
? kMaxHitsWhenPossiblyNonCausal
|
||
|
: kMaxHitsWhenPossiblyCausal;
|
||
|
int i = 0;
|
||
|
|
||
|
RTC_DCHECK_EQ(self->history_size, self->farend->history_size);
|
||
|
// Reset `candidate_hits` if we have a new candidate.
|
||
|
if (candidate_delay != self->last_candidate_delay) {
|
||
|
self->candidate_hits = 0;
|
||
|
self->last_candidate_delay = candidate_delay;
|
||
|
}
|
||
|
self->candidate_hits++;
|
||
|
|
||
|
// The `histogram` is updated differently across the bins.
|
||
|
// 1. The `candidate_delay` histogram bin is increased with the
|
||
|
// `valley_depth`, which is a simple measure of how reliable the
|
||
|
// `candidate_delay` is. The histogram is not increased above
|
||
|
// `kHistogramMax`.
|
||
|
self->histogram[candidate_delay] += valley_depth;
|
||
|
if (self->histogram[candidate_delay] > kHistogramMax) {
|
||
|
self->histogram[candidate_delay] = kHistogramMax;
|
||
|
}
|
||
|
// 2. The histogram bins in the neighborhood of `candidate_delay` are
|
||
|
// unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
|
||
|
// 3. The histogram bins in the neighborhood of `last_delay` are decreased
|
||
|
// with `decrease_in_last_set`. This value equals the difference between
|
||
|
// the cost function values at the locations `candidate_delay` and
|
||
|
// `last_delay` until we reach `max_hits_for_slow_change` consecutive hits
|
||
|
// at the `candidate_delay`. If we exceed this amount of hits the
|
||
|
// `candidate_delay` is a "potential" candidate and we start decreasing
|
||
|
// these histogram bins more rapidly with `valley_depth`.
|
||
|
if (self->candidate_hits < max_hits_for_slow_change) {
|
||
|
decrease_in_last_set =
|
||
|
(self->mean_bit_counts[self->compare_delay] - valley_level_q14) *
|
||
|
kQ14Scaling;
|
||
|
}
|
||
|
// 4. All other bins are decreased with `valley_depth`.
|
||
|
// TODO(bjornv): Investigate how to make this loop more efficient. Split up
|
||
|
// the loop? Remove parts that doesn't add too much.
|
||
|
for (i = 0; i < self->history_size; ++i) {
|
||
|
int is_in_last_set = (i >= self->last_delay - 2) &&
|
||
|
(i <= self->last_delay + 1) && (i != candidate_delay);
|
||
|
int is_in_candidate_set =
|
||
|
(i >= candidate_delay - 2) && (i <= candidate_delay + 1);
|
||
|
self->histogram[i] -=
|
||
|
decrease_in_last_set * is_in_last_set +
|
||
|
valley_depth * (!is_in_last_set && !is_in_candidate_set);
|
||
|
// 5. No histogram bin can go below 0.
|
||
|
if (self->histogram[i] < 0) {
|
||
|
self->histogram[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Validates the `candidate_delay`, estimated in WebRtc_ProcessBinarySpectrum(),
|
||
|
// based on a mix of counting concurring hits with a modified histogram
|
||
|
// of recent delay estimates. In brief a candidate is valid (returns 1) if it
|
||
|
// is the most likely according to the histogram. There are a couple of
|
||
|
// exceptions that are worth mentioning:
|
||
|
// 1. If the `candidate_delay` < `last_delay` it can be that we are in a
|
||
|
// non-causal state, breaking a possible echo control algorithm. Hence, we
|
||
|
// open up for a quicker change by allowing the change even if the
|
||
|
// `candidate_delay` is not the most likely one according to the histogram.
|
||
|
// 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
|
||
|
// value has to reached a minimum (kMinHistogramThreshold) to be valid.
|
||
|
// 3. The action is also depending on the filter length used for echo control.
|
||
|
// If the delay difference is larger than what the filter can capture, we
|
||
|
// also move quicker towards a change.
|
||
|
// For further description see commented code.
|
||
|
//
|
||
|
// Input:
|
||
|
// - candidate_delay : The delay to validate.
|
||
|
//
|
||
|
// Return value:
|
||
|
// - is_histogram_valid : 1 - The `candidate_delay` is valid.
|
||
|
// 0 - Otherwise.
|
||
|
static int HistogramBasedValidation(const BinaryDelayEstimator* self,
|
||
|
int candidate_delay) {
|
||
|
float fraction = 1.f;
|
||
|
float histogram_threshold = self->histogram[self->compare_delay];
|
||
|
const int delay_difference = candidate_delay - self->last_delay;
|
||
|
int is_histogram_valid = 0;
|
||
|
|
||
|
// The histogram based validation of `candidate_delay` is done by comparing
|
||
|
// the `histogram` at bin `candidate_delay` with a `histogram_threshold`.
|
||
|
// This `histogram_threshold` equals a `fraction` of the `histogram` at bin
|
||
|
// `last_delay`. The `fraction` is a piecewise linear function of the
|
||
|
// `delay_difference` between the `candidate_delay` and the `last_delay`
|
||
|
// allowing for a quicker move if
|
||
|
// i) a potential echo control filter can not handle these large differences.
|
||
|
// ii) keeping `last_delay` instead of updating to `candidate_delay` could
|
||
|
// force an echo control into a non-causal state.
|
||
|
// We further require the histogram to have reached a minimum value of
|
||
|
// `kMinHistogramThreshold`. In addition, we also require the number of
|
||
|
// `candidate_hits` to be more than `kMinRequiredHits` to remove spurious
|
||
|
// values.
|
||
|
|
||
|
// Calculate a comparison histogram value (`histogram_threshold`) that is
|
||
|
// depending on the distance between the `candidate_delay` and `last_delay`.
|
||
|
// TODO(bjornv): How much can we gain by turning the fraction calculation
|
||
|
// into tables?
|
||
|
if (delay_difference > self->allowed_offset) {
|
||
|
fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
|
||
|
fraction = (fraction > kMinFractionWhenPossiblyCausal
|
||
|
? fraction
|
||
|
: kMinFractionWhenPossiblyCausal);
|
||
|
} else if (delay_difference < 0) {
|
||
|
fraction =
|
||
|
kMinFractionWhenPossiblyNonCausal - kFractionSlope * delay_difference;
|
||
|
fraction = (fraction > 1.f ? 1.f : fraction);
|
||
|
}
|
||
|
histogram_threshold *= fraction;
|
||
|
histogram_threshold =
|
||
|
(histogram_threshold > kMinHistogramThreshold ? histogram_threshold
|
||
|
: kMinHistogramThreshold);
|
||
|
|
||
|
is_histogram_valid =
|
||
|
(self->histogram[candidate_delay] >= histogram_threshold) &&
|
||
|
(self->candidate_hits > kMinRequiredHits);
|
||
|
|
||
|
return is_histogram_valid;
|
||
|
}
|
||
|
|
||
|
// Performs a robust validation of the `candidate_delay` estimated in
|
||
|
// WebRtc_ProcessBinarySpectrum(). The algorithm takes the
|
||
|
// `is_instantaneous_valid` and the `is_histogram_valid` and combines them
|
||
|
// into a robust validation. The HistogramBasedValidation() has to be called
|
||
|
// prior to this call.
|
||
|
// For further description on how the combination is done, see commented code.
|
||
|
//
|
||
|
// Inputs:
|
||
|
// - candidate_delay : The delay to validate.
|
||
|
// - is_instantaneous_valid : The instantaneous validation performed in
|
||
|
// WebRtc_ProcessBinarySpectrum().
|
||
|
// - is_histogram_valid : The histogram based validation.
|
||
|
//
|
||
|
// Return value:
|
||
|
// - is_robust : 1 - The candidate_delay is valid according to a
|
||
|
// combination of the two inputs.
|
||
|
// : 0 - Otherwise.
|
||
|
static int RobustValidation(const BinaryDelayEstimator* self,
|
||
|
int candidate_delay,
|
||
|
int is_instantaneous_valid,
|
||
|
int is_histogram_valid) {
|
||
|
int is_robust = 0;
|
||
|
|
||
|
// The final robust validation is based on the two algorithms; 1) the
|
||
|
// `is_instantaneous_valid` and 2) the histogram based with result stored in
|
||
|
// `is_histogram_valid`.
|
||
|
// i) Before we actually have a valid estimate (`last_delay` == -2), we say
|
||
|
// a candidate is valid if either algorithm states so
|
||
|
// (`is_instantaneous_valid` OR `is_histogram_valid`).
|
||
|
is_robust =
|
||
|
(self->last_delay < 0) && (is_instantaneous_valid || is_histogram_valid);
|
||
|
// ii) Otherwise, we need both algorithms to be certain
|
||
|
// (`is_instantaneous_valid` AND `is_histogram_valid`)
|
||
|
is_robust |= is_instantaneous_valid && is_histogram_valid;
|
||
|
// iii) With one exception, i.e., the histogram based algorithm can overrule
|
||
|
// the instantaneous one if `is_histogram_valid` = 1 and the histogram
|
||
|
// is significantly strong.
|
||
|
is_robust |= is_histogram_valid &&
|
||
|
(self->histogram[candidate_delay] > self->last_delay_histogram);
|
||
|
|
||
|
return is_robust;
|
||
|
}
|
||
|
|
||
|
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
|
||
|
if (self == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
free(self->binary_far_history);
|
||
|
self->binary_far_history = NULL;
|
||
|
|
||
|
free(self->far_bit_counts);
|
||
|
self->far_bit_counts = NULL;
|
||
|
|
||
|
free(self);
|
||
|
}
|
||
|
|
||
|
BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
|
||
|
int history_size) {
|
||
|
BinaryDelayEstimatorFarend* self = NULL;
|
||
|
|
||
|
if (history_size > 1) {
|
||
|
// Sanity conditions fulfilled.
|
||
|
self = static_cast<BinaryDelayEstimatorFarend*>(
|
||
|
malloc(sizeof(BinaryDelayEstimatorFarend)));
|
||
|
}
|
||
|
if (self == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
self->history_size = 0;
|
||
|
self->binary_far_history = NULL;
|
||
|
self->far_bit_counts = NULL;
|
||
|
if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) {
|
||
|
WebRtc_FreeBinaryDelayEstimatorFarend(self);
|
||
|
self = NULL;
|
||
|
}
|
||
|
return self;
|
||
|
}
|
||
|
|
||
|
int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
|
||
|
int history_size) {
|
||
|
RTC_DCHECK(self);
|
||
|
// (Re-)Allocate memory for history buffers.
|
||
|
self->binary_far_history = static_cast<uint32_t*>(
|
||
|
realloc(self->binary_far_history,
|
||
|
history_size * sizeof(*self->binary_far_history)));
|
||
|
self->far_bit_counts = static_cast<int*>(realloc(
|
||
|
self->far_bit_counts, history_size * sizeof(*self->far_bit_counts)));
|
||
|
if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) {
|
||
|
history_size = 0;
|
||
|
}
|
||
|
// Fill with zeros if we have expanded the buffers.
|
||
|
if (history_size > self->history_size) {
|
||
|
int size_diff = history_size - self->history_size;
|
||
|
memset(&self->binary_far_history[self->history_size], 0,
|
||
|
sizeof(*self->binary_far_history) * size_diff);
|
||
|
memset(&self->far_bit_counts[self->history_size], 0,
|
||
|
sizeof(*self->far_bit_counts) * size_diff);
|
||
|
}
|
||
|
self->history_size = history_size;
|
||
|
|
||
|
return self->history_size;
|
||
|
}
|
||
|
|
||
|
void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
|
||
|
RTC_DCHECK(self);
|
||
|
memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
|
||
|
memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
|
||
|
}
|
||
|
|
||
|
void WebRtc_SoftResetBinaryDelayEstimatorFarend(
|
||
|
BinaryDelayEstimatorFarend* self,
|
||
|
int delay_shift) {
|
||
|
int abs_shift = abs(delay_shift);
|
||
|
int shift_size = 0;
|
||
|
int dest_index = 0;
|
||
|
int src_index = 0;
|
||
|
int padding_index = 0;
|
||
|
|
||
|
RTC_DCHECK(self);
|
||
|
shift_size = self->history_size - abs_shift;
|
||
|
RTC_DCHECK_GT(shift_size, 0);
|
||
|
if (delay_shift == 0) {
|
||
|
return;
|
||
|
} else if (delay_shift > 0) {
|
||
|
dest_index = abs_shift;
|
||
|
} else if (delay_shift < 0) {
|
||
|
src_index = abs_shift;
|
||
|
padding_index = shift_size;
|
||
|
}
|
||
|
|
||
|
// Shift and zero pad buffers.
|
||
|
memmove(&self->binary_far_history[dest_index],
|
||
|
&self->binary_far_history[src_index],
|
||
|
sizeof(*self->binary_far_history) * shift_size);
|
||
|
memset(&self->binary_far_history[padding_index], 0,
|
||
|
sizeof(*self->binary_far_history) * abs_shift);
|
||
|
memmove(&self->far_bit_counts[dest_index], &self->far_bit_counts[src_index],
|
||
|
sizeof(*self->far_bit_counts) * shift_size);
|
||
|
memset(&self->far_bit_counts[padding_index], 0,
|
||
|
sizeof(*self->far_bit_counts) * abs_shift);
|
||
|
}
|
||
|
|
||
|
void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
|
||
|
uint32_t binary_far_spectrum) {
|
||
|
RTC_DCHECK(handle);
|
||
|
// Shift binary spectrum history and insert current `binary_far_spectrum`.
|
||
|
memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
|
||
|
(handle->history_size - 1) * sizeof(uint32_t));
|
||
|
handle->binary_far_history[0] = binary_far_spectrum;
|
||
|
|
||
|
// Shift history of far-end binary spectrum bit counts and insert bit count
|
||
|
// of current `binary_far_spectrum`.
|
||
|
memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
|
||
|
(handle->history_size - 1) * sizeof(int));
|
||
|
handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
|
||
|
}
|
||
|
|
||
|
void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
|
||
|
if (self == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
free(self->mean_bit_counts);
|
||
|
self->mean_bit_counts = NULL;
|
||
|
|
||
|
free(self->bit_counts);
|
||
|
self->bit_counts = NULL;
|
||
|
|
||
|
free(self->binary_near_history);
|
||
|
self->binary_near_history = NULL;
|
||
|
|
||
|
free(self->histogram);
|
||
|
self->histogram = NULL;
|
||
|
|
||
|
// BinaryDelayEstimator does not have ownership of `farend`, hence we do not
|
||
|
// free the memory here. That should be handled separately by the user.
|
||
|
self->farend = NULL;
|
||
|
|
||
|
free(self);
|
||
|
}
|
||
|
|
||
|
BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
|
||
|
BinaryDelayEstimatorFarend* farend,
|
||
|
int max_lookahead) {
|
||
|
BinaryDelayEstimator* self = NULL;
|
||
|
|
||
|
if ((farend != NULL) && (max_lookahead >= 0)) {
|
||
|
// Sanity conditions fulfilled.
|
||
|
self = static_cast<BinaryDelayEstimator*>(
|
||
|
malloc(sizeof(BinaryDelayEstimator)));
|
||
|
}
|
||
|
if (self == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
self->farend = farend;
|
||
|
self->near_history_size = max_lookahead + 1;
|
||
|
self->history_size = 0;
|
||
|
self->robust_validation_enabled = 0; // Disabled by default.
|
||
|
self->allowed_offset = 0;
|
||
|
|
||
|
self->lookahead = max_lookahead;
|
||
|
|
||
|
// Allocate memory for spectrum and history buffers.
|
||
|
self->mean_bit_counts = NULL;
|
||
|
self->bit_counts = NULL;
|
||
|
self->histogram = NULL;
|
||
|
self->binary_near_history = static_cast<uint32_t*>(
|
||
|
malloc((max_lookahead + 1) * sizeof(*self->binary_near_history)));
|
||
|
if (self->binary_near_history == NULL ||
|
||
|
WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) {
|
||
|
WebRtc_FreeBinaryDelayEstimator(self);
|
||
|
self = NULL;
|
||
|
}
|
||
|
|
||
|
return self;
|
||
|
}
|
||
|
|
||
|
int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
|
||
|
int history_size) {
|
||
|
BinaryDelayEstimatorFarend* far = self->farend;
|
||
|
// (Re-)Allocate memory for spectrum and history buffers.
|
||
|
if (history_size != far->history_size) {
|
||
|
// Only update far-end buffers if we need.
|
||
|
history_size = WebRtc_AllocateFarendBufferMemory(far, history_size);
|
||
|
}
|
||
|
// The extra array element in `mean_bit_counts` and `histogram` is a dummy
|
||
|
// element only used while `last_delay` == -2, i.e., before we have a valid
|
||
|
// estimate.
|
||
|
self->mean_bit_counts = static_cast<int32_t*>(
|
||
|
realloc(self->mean_bit_counts,
|
||
|
(history_size + 1) * sizeof(*self->mean_bit_counts)));
|
||
|
self->bit_counts = static_cast<int32_t*>(
|
||
|
realloc(self->bit_counts, history_size * sizeof(*self->bit_counts)));
|
||
|
self->histogram = static_cast<float*>(
|
||
|
realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram)));
|
||
|
|
||
|
if ((self->mean_bit_counts == NULL) || (self->bit_counts == NULL) ||
|
||
|
(self->histogram == NULL)) {
|
||
|
history_size = 0;
|
||
|
}
|
||
|
// Fill with zeros if we have expanded the buffers.
|
||
|
if (history_size > self->history_size) {
|
||
|
int size_diff = history_size - self->history_size;
|
||
|
memset(&self->mean_bit_counts[self->history_size], 0,
|
||
|
sizeof(*self->mean_bit_counts) * size_diff);
|
||
|
memset(&self->bit_counts[self->history_size], 0,
|
||
|
sizeof(*self->bit_counts) * size_diff);
|
||
|
memset(&self->histogram[self->history_size], 0,
|
||
|
sizeof(*self->histogram) * size_diff);
|
||
|
}
|
||
|
self->history_size = history_size;
|
||
|
|
||
|
return self->history_size;
|
||
|
}
|
||
|
|
||
|
void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
|
||
|
int i = 0;
|
||
|
RTC_DCHECK(self);
|
||
|
|
||
|
memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size);
|
||
|
memset(self->binary_near_history, 0,
|
||
|
sizeof(uint32_t) * self->near_history_size);
|
||
|
for (i = 0; i <= self->history_size; ++i) {
|
||
|
self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
|
||
|
self->histogram[i] = 0.f;
|
||
|
}
|
||
|
self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9.
|
||
|
self->last_delay_probability = (int)kMaxBitCountsQ9; // 32 in Q9.
|
||
|
|
||
|
// Default return value if we're unable to estimate. -1 is used for errors.
|
||
|
self->last_delay = -2;
|
||
|
|
||
|
self->last_candidate_delay = -2;
|
||
|
self->compare_delay = self->history_size;
|
||
|
self->candidate_hits = 0;
|
||
|
self->last_delay_histogram = 0.f;
|
||
|
}
|
||
|
|
||
|
int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
|
||
|
int delay_shift) {
|
||
|
int lookahead = 0;
|
||
|
RTC_DCHECK(self);
|
||
|
lookahead = self->lookahead;
|
||
|
self->lookahead -= delay_shift;
|
||
|
if (self->lookahead < 0) {
|
||
|
self->lookahead = 0;
|
||
|
}
|
||
|
if (self->lookahead > self->near_history_size - 1) {
|
||
|
self->lookahead = self->near_history_size - 1;
|
||
|
}
|
||
|
return lookahead - self->lookahead;
|
||
|
}
|
||
|
|
||
|
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
|
||
|
uint32_t binary_near_spectrum) {
|
||
|
int i = 0;
|
||
|
int candidate_delay = -1;
|
||
|
int valid_candidate = 0;
|
||
|
|
||
|
int32_t value_best_candidate = kMaxBitCountsQ9;
|
||
|
int32_t value_worst_candidate = 0;
|
||
|
int32_t valley_depth = 0;
|
||
|
|
||
|
RTC_DCHECK(self);
|
||
|
if (self->farend->history_size != self->history_size) {
|
||
|
// Non matching history sizes.
|
||
|
return -1;
|
||
|
}
|
||
|
if (self->near_history_size > 1) {
|
||
|
// If we apply lookahead, shift near-end binary spectrum history. Insert
|
||
|
// current `binary_near_spectrum` and pull out the delayed one.
|
||
|
memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
|
||
|
(self->near_history_size - 1) * sizeof(uint32_t));
|
||
|
self->binary_near_history[0] = binary_near_spectrum;
|
||
|
binary_near_spectrum = self->binary_near_history[self->lookahead];
|
||
|
}
|
||
|
|
||
|
// Compare with delayed spectra and store the `bit_counts` for each delay.
|
||
|
BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
|
||
|
self->history_size, self->bit_counts);
|
||
|
|
||
|
// Update `mean_bit_counts`, which is the smoothed version of `bit_counts`.
|
||
|
for (i = 0; i < self->history_size; i++) {
|
||
|
// `bit_counts` is constrained to [0, 32], meaning we can smooth with a
|
||
|
// factor up to 2^26. We use Q9.
|
||
|
int32_t bit_count = (self->bit_counts[i] << 9); // Q9.
|
||
|
|
||
|
// Update `mean_bit_counts` only when far-end signal has something to
|
||
|
// contribute. If `far_bit_counts` is zero the far-end signal is weak and
|
||
|
// we likely have a poor echo condition, hence don't update.
|
||
|
if (self->farend->far_bit_counts[i] > 0) {
|
||
|
// Make number of right shifts piecewise linear w.r.t. `far_bit_counts`.
|
||
|
int shifts = kShiftsAtZero;
|
||
|
shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
|
||
|
WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Find `candidate_delay`, `value_best_candidate` and `value_worst_candidate`
|
||
|
// of `mean_bit_counts`.
|
||
|
for (i = 0; i < self->history_size; i++) {
|
||
|
if (self->mean_bit_counts[i] < value_best_candidate) {
|
||
|
value_best_candidate = self->mean_bit_counts[i];
|
||
|
candidate_delay = i;
|
||
|
}
|
||
|
if (self->mean_bit_counts[i] > value_worst_candidate) {
|
||
|
value_worst_candidate = self->mean_bit_counts[i];
|
||
|
}
|
||
|
}
|
||
|
valley_depth = value_worst_candidate - value_best_candidate;
|
||
|
|
||
|
// The `value_best_candidate` is a good indicator on the probability of
|
||
|
// `candidate_delay` being an accurate delay (a small `value_best_candidate`
|
||
|
// means a good binary match). In the following sections we make a decision
|
||
|
// whether to update `last_delay` or not.
|
||
|
// 1) If the difference bit counts between the best and the worst delay
|
||
|
// candidates is too small we consider the situation to be unreliable and
|
||
|
// don't update `last_delay`.
|
||
|
// 2) If the situation is reliable we update `last_delay` if the value of the
|
||
|
// best candidate delay has a value less than
|
||
|
// i) an adaptive threshold `minimum_probability`, or
|
||
|
// ii) this corresponding value `last_delay_probability`, but updated at
|
||
|
// this time instant.
|
||
|
|
||
|
// Update `minimum_probability`.
|
||
|
if ((self->minimum_probability > kProbabilityLowerLimit) &&
|
||
|
(valley_depth > kProbabilityMinSpread)) {
|
||
|
// The "hard" threshold can't be lower than 17 (in Q9).
|
||
|
// The valley in the curve also has to be distinct, i.e., the
|
||
|
// difference between `value_worst_candidate` and `value_best_candidate` has
|
||
|
// to be large enough.
|
||
|
int32_t threshold = value_best_candidate + kProbabilityOffset;
|
||
|
if (threshold < kProbabilityLowerLimit) {
|
||
|
threshold = kProbabilityLowerLimit;
|
||
|
}
|
||
|
if (self->minimum_probability > threshold) {
|
||
|
self->minimum_probability = threshold;
|
||
|
}
|
||
|
}
|
||
|
// Update `last_delay_probability`.
|
||
|
// We use a Markov type model, i.e., a slowly increasing level over time.
|
||
|
self->last_delay_probability++;
|
||
|
// Validate `candidate_delay`. We have a reliable instantaneous delay
|
||
|
// estimate if
|
||
|
// 1) The valley is distinct enough (`valley_depth` > `kProbabilityOffset`)
|
||
|
// and
|
||
|
// 2) The depth of the valley is deep enough
|
||
|
// (`value_best_candidate` < `minimum_probability`)
|
||
|
// and deeper than the best estimate so far
|
||
|
// (`value_best_candidate` < `last_delay_probability`)
|
||
|
valid_candidate = ((valley_depth > kProbabilityOffset) &&
|
||
|
((value_best_candidate < self->minimum_probability) ||
|
||
|
(value_best_candidate < self->last_delay_probability)));
|
||
|
|
||
|
// Check for nonstationary farend signal.
|
||
|
const bool non_stationary_farend =
|
||
|
std::any_of(self->farend->far_bit_counts,
|
||
|
self->farend->far_bit_counts + self->history_size,
|
||
|
[](int a) { return a > 0; });
|
||
|
|
||
|
if (non_stationary_farend) {
|
||
|
// Only update the validation statistics when the farend is nonstationary
|
||
|
// as the underlying estimates are otherwise frozen.
|
||
|
UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
|
||
|
value_best_candidate);
|
||
|
}
|
||
|
|
||
|
if (self->robust_validation_enabled) {
|
||
|
int is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
|
||
|
valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
|
||
|
is_histogram_valid);
|
||
|
}
|
||
|
|
||
|
// Only update the delay estimate when the farend is nonstationary and when
|
||
|
// a valid delay candidate is available.
|
||
|
if (non_stationary_farend && valid_candidate) {
|
||
|
if (candidate_delay != self->last_delay) {
|
||
|
self->last_delay_histogram =
|
||
|
(self->histogram[candidate_delay] > kLastHistogramMax
|
||
|
? kLastHistogramMax
|
||
|
: self->histogram[candidate_delay]);
|
||
|
// Adjust the histogram if we made a change to `last_delay`, though it was
|
||
|
// not the most likely one according to the histogram.
|
||
|
if (self->histogram[candidate_delay] <
|
||
|
self->histogram[self->compare_delay]) {
|
||
|
self->histogram[self->compare_delay] = self->histogram[candidate_delay];
|
||
|
}
|
||
|
}
|
||
|
self->last_delay = candidate_delay;
|
||
|
if (value_best_candidate < self->last_delay_probability) {
|
||
|
self->last_delay_probability = value_best_candidate;
|
||
|
}
|
||
|
self->compare_delay = self->last_delay;
|
||
|
}
|
||
|
|
||
|
return self->last_delay;
|
||
|
}
|
||
|
|
||
|
int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
|
||
|
RTC_DCHECK(self);
|
||
|
return self->last_delay;
|
||
|
}
|
||
|
|
||
|
float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
|
||
|
float quality = 0;
|
||
|
RTC_DCHECK(self);
|
||
|
|
||
|
if (self->robust_validation_enabled) {
|
||
|
// Simply a linear function of the histogram height at delay estimate.
|
||
|
quality = self->histogram[self->compare_delay] / kHistogramMax;
|
||
|
} else {
|
||
|
// Note that `last_delay_probability` states how deep the minimum of the
|
||
|
// cost function is, so it is rather an error probability.
|
||
|
quality = (float)(kMaxBitCountsQ9 - self->last_delay_probability) /
|
||
|
kMaxBitCountsQ9;
|
||
|
if (quality < 0) {
|
||
|
quality = 0;
|
||
|
}
|
||
|
}
|
||
|
return quality;
|
||
|
}
|
||
|
|
||
|
void WebRtc_MeanEstimatorFix(int32_t new_value,
|
||
|
int factor,
|
||
|
int32_t* mean_value) {
|
||
|
int32_t diff = new_value - *mean_value;
|
||
|
|
||
|
// mean_new = mean_value + ((new_value - mean_value) >> factor);
|
||
|
if (diff < 0) {
|
||
|
diff = -((-diff) >> factor);
|
||
|
} else {
|
||
|
diff = (diff >> factor);
|
||
|
}
|
||
|
*mean_value += diff;
|
||
|
}
|
||
|
|
||
|
} // namespace webrtc
|