/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef COMMON_AUDIO_CHANNEL_BUFFER_H_ #define COMMON_AUDIO_CHANNEL_BUFFER_H_ #include #include #include #include "api/array_view.h" #include "common_audio/include/audio_util.h" #include "rtc_base/checks.h" #include "rtc_base/gtest_prod_util.h" namespace webrtc { // TODO: b/335805780 - Remove this method. Instead, use Deinterleave() from // audio_util.h which requires size checked buffer views. template void Deinterleave(const T* interleaved, size_t samples_per_channel, size_t num_channels, T* const* deinterleaved) { for (size_t i = 0; i < num_channels; ++i) { T* channel = deinterleaved[i]; size_t interleaved_idx = i; for (size_t j = 0; j < samples_per_channel; ++j) { channel[j] = interleaved[interleaved_idx]; interleaved_idx += num_channels; } } } // `Interleave()` variant for cases where the deinterleaved channels aren't // represented by a `DeinterleavedView`. // TODO: b/335805780 - Remove this method. Instead, use Deinterleave() from // audio_util.h which requires size checked buffer views. template void Interleave(const T* const* deinterleaved, size_t samples_per_channel, size_t num_channels, InterleavedView& interleaved) { RTC_DCHECK_EQ(NumChannels(interleaved), num_channels); RTC_DCHECK_EQ(SamplesPerChannel(interleaved), samples_per_channel); for (size_t i = 0; i < num_channels; ++i) { const T* channel = deinterleaved[i]; size_t interleaved_idx = i; for (size_t j = 0; j < samples_per_channel; ++j) { interleaved[interleaved_idx] = channel[j]; interleaved_idx += num_channels; } } } // Helper to encapsulate a contiguous data buffer, full or split into frequency // bands, with access to a pointer arrays of the deinterleaved channels and // bands. The buffer is zero initialized at creation. // // The buffer structure is showed below for a 2 channel and 2 bands case: // // `data_`: // { [ --- b1ch1 --- ] [ --- b2ch1 --- ] [ --- b1ch2 --- ] [ --- b2ch2 --- ] } // // The pointer arrays for the same example are as follows: // // `channels_`: // { [ b1ch1* ] [ b1ch2* ] [ b2ch1* ] [ b2ch2* ] } // // `bands_`: // { [ b1ch1* ] [ b2ch1* ] [ b1ch2* ] [ b2ch2* ] } template class ChannelBuffer { public: ChannelBuffer(size_t num_frames, size_t num_channels, size_t num_bands = 1) : data_(new T[num_frames * num_channels]()), channels_(new T*[num_channels * num_bands]), bands_(new T*[num_channels * num_bands]), num_frames_(num_frames), num_frames_per_band_(num_frames / num_bands), num_allocated_channels_(num_channels), num_channels_(num_channels), num_bands_(num_bands), bands_view_(num_allocated_channels_, std::vector>(num_bands_)), channels_view_( num_bands_, std::vector>(num_allocated_channels_)) { // Temporarily cast away const_ness to allow populating the array views. auto* bands_view = const_cast>>*>(&bands_view_); auto* channels_view = const_cast>>*>( &channels_view_); for (size_t ch = 0; ch < num_allocated_channels_; ++ch) { for (size_t band = 0; band < num_bands_; ++band) { (*channels_view)[band][ch] = rtc::ArrayView( &data_[ch * num_frames_ + band * num_frames_per_band_], num_frames_per_band_); (*bands_view)[ch][band] = channels_view_[band][ch]; channels_[band * num_allocated_channels_ + ch] = channels_view_[band][ch].data(); bands_[ch * num_bands_ + band] = channels_[band * num_allocated_channels_ + ch]; } } } // Returns a pointer array to the channels. // If band is explicitly specificed, the channels for a specific band are // returned and the usage becomes: channels(band)[channel][sample]. // Where: // 0 <= band < `num_bands_` // 0 <= channel < `num_allocated_channels_` // 0 <= sample < `num_frames_per_band_` // If band is not explicitly specified, the full-band channels (or lower band // channels) are returned and the usage becomes: channels()[channel][sample]. // Where: // 0 <= channel < `num_allocated_channels_` // 0 <= sample < `num_frames_` const T* const* channels(size_t band = 0) const { RTC_DCHECK_LT(band, num_bands_); return &channels_[band * num_allocated_channels_]; } T* const* channels(size_t band = 0) { const ChannelBuffer* t = this; return const_cast(t->channels(band)); } rtc::ArrayView> channels_view(size_t band = 0) { return channels_view_[band]; } rtc::ArrayView> channels_view(size_t band = 0) const { return channels_view_[band]; } // Returns a pointer array to the bands for a specific channel. // Usage: // bands(channel)[band][sample]. // Where: // 0 <= channel < `num_channels_` // 0 <= band < `num_bands_` // 0 <= sample < `num_frames_per_band_` const T* const* bands(size_t channel) const { RTC_DCHECK_LT(channel, num_channels_); RTC_DCHECK_GE(channel, 0); return &bands_[channel * num_bands_]; } T* const* bands(size_t channel) { const ChannelBuffer* t = this; return const_cast(t->bands(channel)); } rtc::ArrayView> bands_view(size_t channel) { return bands_view_[channel]; } rtc::ArrayView> bands_view(size_t channel) const { return bands_view_[channel]; } // Sets the `slice` pointers to the `start_frame` position for each channel. // Returns `slice` for convenience. const T* const* Slice(T** slice, size_t start_frame) const { RTC_DCHECK_LT(start_frame, num_frames_); for (size_t i = 0; i < num_channels_; ++i) slice[i] = &channels_[i][start_frame]; return slice; } T** Slice(T** slice, size_t start_frame) { const ChannelBuffer* t = this; return const_cast(t->Slice(slice, start_frame)); } size_t num_frames() const { return num_frames_; } size_t num_frames_per_band() const { return num_frames_per_band_; } size_t num_channels() const { return num_channels_; } size_t num_bands() const { return num_bands_; } size_t size() const { return num_frames_ * num_allocated_channels_; } void set_num_channels(size_t num_channels) { RTC_DCHECK_LE(num_channels, num_allocated_channels_); num_channels_ = num_channels; } void SetDataForTesting(const T* data, size_t size) { RTC_CHECK_EQ(size, this->size()); memcpy(data_.get(), data, size * sizeof(*data)); } private: std::unique_ptr data_; std::unique_ptr channels_; std::unique_ptr bands_; const size_t num_frames_; const size_t num_frames_per_band_; // Number of channels the internal buffer holds. const size_t num_allocated_channels_; // Number of channels the user sees. size_t num_channels_; const size_t num_bands_; const std::vector>> bands_view_; const std::vector>> channels_view_; }; // One int16_t and one float ChannelBuffer that are kept in sync. The sync is // broken when someone requests write access to either ChannelBuffer, and // reestablished when someone requests the outdated ChannelBuffer. It is // therefore safe to use the return value of ibuf_const() and fbuf_const() // until the next call to ibuf() or fbuf(), and the return value of ibuf() and // fbuf() until the next call to any of the other functions. class IFChannelBuffer { public: IFChannelBuffer(size_t num_frames, size_t num_channels, size_t num_bands = 1); ~IFChannelBuffer(); ChannelBuffer* ibuf(); ChannelBuffer* fbuf(); const ChannelBuffer* ibuf_const() const; const ChannelBuffer* fbuf_const() const; size_t num_frames() const { return ibuf_.num_frames(); } size_t num_frames_per_band() const { return ibuf_.num_frames_per_band(); } size_t num_channels() const { return ivalid_ ? ibuf_.num_channels() : fbuf_.num_channels(); } void set_num_channels(size_t num_channels) { ibuf_.set_num_channels(num_channels); fbuf_.set_num_channels(num_channels); } size_t num_bands() const { return ibuf_.num_bands(); } private: void RefreshF() const; void RefreshI() const; mutable bool ivalid_; mutable ChannelBuffer ibuf_; mutable bool fvalid_; mutable ChannelBuffer fbuf_; }; } // namespace webrtc #endif // COMMON_AUDIO_CHANNEL_BUFFER_H_