522 lines
22 KiB
C++
522 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "modules/audio_processing/aec3/echo_remover.h"
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cmath>
|
|
#include <memory>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/aec3_common.h"
|
|
#include "modules/audio_processing/aec3/aec3_fft.h"
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
#include "modules/audio_processing/aec3/comfort_noise_generator.h"
|
|
#include "modules/audio_processing/aec3/echo_path_variability.h"
|
|
#include "modules/audio_processing/aec3/echo_remover_metrics.h"
|
|
#include "modules/audio_processing/aec3/fft_data.h"
|
|
#include "modules/audio_processing/aec3/render_buffer.h"
|
|
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
#include "modules/audio_processing/aec3/subtractor.h"
|
|
#include "modules/audio_processing/aec3/subtractor_output.h"
|
|
#include "modules/audio_processing/aec3/suppression_filter.h"
|
|
#include "modules/audio_processing/aec3/suppression_gain.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
// Maximum number of channels for which the capture channel data is stored on
|
|
// the stack. If the number of channels are larger than this, they are stored
|
|
// using scratch memory that is pre-allocated on the heap. The reason for this
|
|
// partitioning is not to waste heap space for handling the more common numbers
|
|
// of channels, while at the same time not limiting the support for higher
|
|
// numbers of channels by enforcing the capture channel data to be stored on the
|
|
// stack using a fixed maximum value.
|
|
constexpr size_t kMaxNumChannelsOnStack = 2;
|
|
|
|
// Chooses the number of channels to store on the heap when that is required due
|
|
// to the number of capture channels being larger than the pre-defined number
|
|
// of channels to store on the stack.
|
|
size_t NumChannelsOnHeap(size_t num_capture_channels) {
|
|
return num_capture_channels > kMaxNumChannelsOnStack ? num_capture_channels
|
|
: 0;
|
|
}
|
|
|
|
void LinearEchoPower(const FftData& E,
|
|
const FftData& Y,
|
|
std::array<float, kFftLengthBy2Plus1>* S2) {
|
|
for (size_t k = 0; k < E.re.size(); ++k) {
|
|
(*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) +
|
|
(Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]);
|
|
}
|
|
}
|
|
|
|
// Fades between two input signals using a fix-sized transition.
|
|
void SignalTransition(rtc::ArrayView<const float> from,
|
|
rtc::ArrayView<const float> to,
|
|
rtc::ArrayView<float> out) {
|
|
if (from == to) {
|
|
RTC_DCHECK_EQ(to.size(), out.size());
|
|
std::copy(to.begin(), to.end(), out.begin());
|
|
} else {
|
|
constexpr size_t kTransitionSize = 30;
|
|
constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1);
|
|
|
|
RTC_DCHECK_EQ(from.size(), to.size());
|
|
RTC_DCHECK_EQ(from.size(), out.size());
|
|
RTC_DCHECK_LE(kTransitionSize, out.size());
|
|
|
|
for (size_t k = 0; k < kTransitionSize; ++k) {
|
|
float a = (k + 1) * kOneByTransitionSizePlusOne;
|
|
out[k] = a * to[k] + (1.f - a) * from[k];
|
|
}
|
|
|
|
std::copy(to.begin() + kTransitionSize, to.end(),
|
|
out.begin() + kTransitionSize);
|
|
}
|
|
}
|
|
|
|
// Computes a windowed (square root Hanning) padded FFT and updates the related
|
|
// memory.
|
|
void WindowedPaddedFft(const Aec3Fft& fft,
|
|
rtc::ArrayView<const float> v,
|
|
rtc::ArrayView<float> v_old,
|
|
FftData* V) {
|
|
fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V);
|
|
std::copy(v.begin(), v.end(), v_old.begin());
|
|
}
|
|
|
|
// Class for removing the echo from the capture signal.
|
|
class EchoRemoverImpl final : public EchoRemover {
|
|
public:
|
|
EchoRemoverImpl(const EchoCanceller3Config& config,
|
|
int sample_rate_hz,
|
|
size_t num_render_channels,
|
|
size_t num_capture_channels);
|
|
~EchoRemoverImpl() override;
|
|
EchoRemoverImpl(const EchoRemoverImpl&) = delete;
|
|
EchoRemoverImpl& operator=(const EchoRemoverImpl&) = delete;
|
|
|
|
void GetMetrics(EchoControl::Metrics* metrics) const override;
|
|
|
|
// Removes the echo from a block of samples from the capture signal. The
|
|
// supplied render signal is assumed to be pre-aligned with the capture
|
|
// signal.
|
|
void ProcessCapture(EchoPathVariability echo_path_variability,
|
|
bool capture_signal_saturation,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
RenderBuffer* render_buffer,
|
|
Block* linear_output,
|
|
Block* capture) override;
|
|
|
|
// Updates the status on whether echo leakage is detected in the output of the
|
|
// echo remover.
|
|
void UpdateEchoLeakageStatus(bool leakage_detected) override {
|
|
echo_leakage_detected_ = leakage_detected;
|
|
}
|
|
|
|
void SetCaptureOutputUsage(bool capture_output_used) override {
|
|
capture_output_used_ = capture_output_used;
|
|
}
|
|
|
|
private:
|
|
// Selects which of the coarse and refined linear filter outputs that is most
|
|
// appropriate to pass to the suppressor and forms the linear filter output by
|
|
// smoothly transition between those.
|
|
void FormLinearFilterOutput(const SubtractorOutput& subtractor_output,
|
|
rtc::ArrayView<float> output);
|
|
|
|
static std::atomic<int> instance_count_;
|
|
const EchoCanceller3Config config_;
|
|
const Aec3Fft fft_;
|
|
std::unique_ptr<ApmDataDumper> data_dumper_;
|
|
const Aec3Optimization optimization_;
|
|
const int sample_rate_hz_;
|
|
const size_t num_render_channels_;
|
|
const size_t num_capture_channels_;
|
|
const bool use_coarse_filter_output_;
|
|
Subtractor subtractor_;
|
|
SuppressionGain suppression_gain_;
|
|
ComfortNoiseGenerator cng_;
|
|
SuppressionFilter suppression_filter_;
|
|
RenderSignalAnalyzer render_signal_analyzer_;
|
|
ResidualEchoEstimator residual_echo_estimator_;
|
|
bool echo_leakage_detected_ = false;
|
|
bool capture_output_used_ = true;
|
|
AecState aec_state_;
|
|
EchoRemoverMetrics metrics_;
|
|
std::vector<std::array<float, kFftLengthBy2>> e_old_;
|
|
std::vector<std::array<float, kFftLengthBy2>> y_old_;
|
|
size_t block_counter_ = 0;
|
|
int gain_change_hangover_ = 0;
|
|
bool refined_filter_output_last_selected_ = true;
|
|
|
|
std::vector<std::array<float, kFftLengthBy2>> e_heap_;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2_heap_;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_heap_;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_heap_;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded_heap_;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear_heap_;
|
|
std::vector<FftData> Y_heap_;
|
|
std::vector<FftData> E_heap_;
|
|
std::vector<FftData> comfort_noise_heap_;
|
|
std::vector<FftData> high_band_comfort_noise_heap_;
|
|
std::vector<SubtractorOutput> subtractor_output_heap_;
|
|
};
|
|
|
|
std::atomic<int> EchoRemoverImpl::instance_count_(0);
|
|
|
|
EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config,
|
|
int sample_rate_hz,
|
|
size_t num_render_channels,
|
|
size_t num_capture_channels)
|
|
: config_(config),
|
|
fft_(),
|
|
data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
|
|
optimization_(DetectOptimization()),
|
|
sample_rate_hz_(sample_rate_hz),
|
|
num_render_channels_(num_render_channels),
|
|
num_capture_channels_(num_capture_channels),
|
|
use_coarse_filter_output_(
|
|
config_.filter.enable_coarse_filter_output_usage),
|
|
subtractor_(config,
|
|
num_render_channels_,
|
|
num_capture_channels_,
|
|
data_dumper_.get(),
|
|
optimization_),
|
|
suppression_gain_(config_,
|
|
optimization_,
|
|
sample_rate_hz,
|
|
num_capture_channels),
|
|
cng_(config_, optimization_, num_capture_channels_),
|
|
suppression_filter_(optimization_,
|
|
sample_rate_hz_,
|
|
num_capture_channels_),
|
|
render_signal_analyzer_(config_),
|
|
residual_echo_estimator_(config_, num_render_channels),
|
|
aec_state_(config_, num_capture_channels_),
|
|
e_old_(num_capture_channels_, {0.f}),
|
|
y_old_(num_capture_channels_, {0.f}),
|
|
e_heap_(NumChannelsOnHeap(num_capture_channels_), {0.f}),
|
|
Y2_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
E2_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
R2_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
R2_unbounded_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
S2_linear_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
Y_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
E_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
high_band_comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)),
|
|
subtractor_output_heap_(NumChannelsOnHeap(num_capture_channels_)) {
|
|
RTC_DCHECK(ValidFullBandRate(sample_rate_hz));
|
|
}
|
|
|
|
EchoRemoverImpl::~EchoRemoverImpl() = default;
|
|
|
|
void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const {
|
|
// Echo return loss (ERL) is inverted to go from gain to attenuation.
|
|
metrics->echo_return_loss = -10.0 * std::log10(aec_state_.ErlTimeDomain());
|
|
metrics->echo_return_loss_enhancement =
|
|
Log2TodB(aec_state_.FullBandErleLog2());
|
|
}
|
|
|
|
void EchoRemoverImpl::ProcessCapture(
|
|
EchoPathVariability echo_path_variability,
|
|
bool capture_signal_saturation,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
RenderBuffer* render_buffer,
|
|
Block* linear_output,
|
|
Block* capture) {
|
|
++block_counter_;
|
|
const Block& x = render_buffer->GetBlock(0);
|
|
Block* y = capture;
|
|
RTC_DCHECK(render_buffer);
|
|
RTC_DCHECK(y);
|
|
RTC_DCHECK_EQ(x.NumBands(), NumBandsForRate(sample_rate_hz_));
|
|
RTC_DCHECK_EQ(y->NumBands(), NumBandsForRate(sample_rate_hz_));
|
|
RTC_DCHECK_EQ(x.NumChannels(), num_render_channels_);
|
|
RTC_DCHECK_EQ(y->NumChannels(), num_capture_channels_);
|
|
|
|
// Stack allocated data to use when the number of channels is low.
|
|
std::array<std::array<float, kFftLengthBy2>, kMaxNumChannelsOnStack> e_stack;
|
|
std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
|
|
Y2_stack;
|
|
std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
|
|
E2_stack;
|
|
std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
|
|
R2_stack;
|
|
std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
|
|
R2_unbounded_stack;
|
|
std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
|
|
S2_linear_stack;
|
|
std::array<FftData, kMaxNumChannelsOnStack> Y_stack;
|
|
std::array<FftData, kMaxNumChannelsOnStack> E_stack;
|
|
std::array<FftData, kMaxNumChannelsOnStack> comfort_noise_stack;
|
|
std::array<FftData, kMaxNumChannelsOnStack> high_band_comfort_noise_stack;
|
|
std::array<SubtractorOutput, kMaxNumChannelsOnStack> subtractor_output_stack;
|
|
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2>> e(e_stack.data(),
|
|
num_capture_channels_);
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2(
|
|
Y2_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2(
|
|
E2_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2(
|
|
R2_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(
|
|
R2_unbounded_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> S2_linear(
|
|
S2_linear_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<FftData> Y(Y_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<FftData> E(E_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<FftData> comfort_noise(comfort_noise_stack.data(),
|
|
num_capture_channels_);
|
|
rtc::ArrayView<FftData> high_band_comfort_noise(
|
|
high_band_comfort_noise_stack.data(), num_capture_channels_);
|
|
rtc::ArrayView<SubtractorOutput> subtractor_output(
|
|
subtractor_output_stack.data(), num_capture_channels_);
|
|
if (NumChannelsOnHeap(num_capture_channels_) > 0) {
|
|
// If the stack-allocated space is too small, use the heap for storing the
|
|
// microphone data.
|
|
e = rtc::ArrayView<std::array<float, kFftLengthBy2>>(e_heap_.data(),
|
|
num_capture_channels_);
|
|
Y2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
|
|
Y2_heap_.data(), num_capture_channels_);
|
|
E2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
|
|
E2_heap_.data(), num_capture_channels_);
|
|
R2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
|
|
R2_heap_.data(), num_capture_channels_);
|
|
R2_unbounded = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
|
|
R2_unbounded_heap_.data(), num_capture_channels_);
|
|
S2_linear = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
|
|
S2_linear_heap_.data(), num_capture_channels_);
|
|
Y = rtc::ArrayView<FftData>(Y_heap_.data(), num_capture_channels_);
|
|
E = rtc::ArrayView<FftData>(E_heap_.data(), num_capture_channels_);
|
|
comfort_noise = rtc::ArrayView<FftData>(comfort_noise_heap_.data(),
|
|
num_capture_channels_);
|
|
high_band_comfort_noise = rtc::ArrayView<FftData>(
|
|
high_band_comfort_noise_heap_.data(), num_capture_channels_);
|
|
subtractor_output = rtc::ArrayView<SubtractorOutput>(
|
|
subtractor_output_heap_.data(), num_capture_channels_);
|
|
}
|
|
|
|
data_dumper_->DumpWav("aec3_echo_remover_capture_input",
|
|
y->View(/*band=*/0, /*channel=*/0), 16000, 1);
|
|
data_dumper_->DumpWav("aec3_echo_remover_render_input",
|
|
x.View(/*band=*/0, /*channel=*/0), 16000, 1);
|
|
data_dumper_->DumpRaw("aec3_echo_remover_capture_input",
|
|
y->View(/*band=*/0, /*channel=*/0));
|
|
data_dumper_->DumpRaw("aec3_echo_remover_render_input",
|
|
x.View(/*band=*/0, /*channel=*/0));
|
|
|
|
aec_state_.UpdateCaptureSaturation(capture_signal_saturation);
|
|
|
|
if (echo_path_variability.AudioPathChanged()) {
|
|
// Ensure that the gain change is only acted on once per frame.
|
|
if (echo_path_variability.gain_change) {
|
|
if (gain_change_hangover_ == 0) {
|
|
constexpr int kMaxBlocksPerFrame = 3;
|
|
gain_change_hangover_ = kMaxBlocksPerFrame;
|
|
rtc::LoggingSeverity log_level =
|
|
config_.delay.log_warning_on_delay_changes ? rtc::LS_WARNING
|
|
: rtc::LS_VERBOSE;
|
|
RTC_LOG_V(log_level)
|
|
<< "Gain change detected at block " << block_counter_;
|
|
} else {
|
|
echo_path_variability.gain_change = false;
|
|
}
|
|
}
|
|
|
|
subtractor_.HandleEchoPathChange(echo_path_variability);
|
|
aec_state_.HandleEchoPathChange(echo_path_variability);
|
|
|
|
if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kNone) {
|
|
suppression_gain_.SetInitialState(true);
|
|
}
|
|
}
|
|
if (gain_change_hangover_ > 0) {
|
|
--gain_change_hangover_;
|
|
}
|
|
|
|
// Analyze the render signal.
|
|
render_signal_analyzer_.Update(*render_buffer,
|
|
aec_state_.MinDirectPathFilterDelay());
|
|
|
|
// State transition.
|
|
if (aec_state_.TransitionTriggered()) {
|
|
subtractor_.ExitInitialState();
|
|
suppression_gain_.SetInitialState(false);
|
|
}
|
|
|
|
// Perform linear echo cancellation.
|
|
subtractor_.Process(*render_buffer, *y, render_signal_analyzer_, aec_state_,
|
|
subtractor_output);
|
|
|
|
// Compute spectra.
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
FormLinearFilterOutput(subtractor_output[ch], e[ch]);
|
|
WindowedPaddedFft(fft_, y->View(/*band=*/0, ch), y_old_[ch], &Y[ch]);
|
|
WindowedPaddedFft(fft_, e[ch], e_old_[ch], &E[ch]);
|
|
LinearEchoPower(E[ch], Y[ch], &S2_linear[ch]);
|
|
Y[ch].Spectrum(optimization_, Y2[ch]);
|
|
E[ch].Spectrum(optimization_, E2[ch]);
|
|
}
|
|
|
|
// Optionally return the linear filter output.
|
|
if (linear_output) {
|
|
RTC_DCHECK_GE(1, linear_output->NumBands());
|
|
RTC_DCHECK_EQ(num_capture_channels_, linear_output->NumChannels());
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
std::copy(e[ch].begin(), e[ch].end(),
|
|
linear_output->begin(/*band=*/0, ch));
|
|
}
|
|
}
|
|
|
|
// Update the AEC state information.
|
|
aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponses(),
|
|
subtractor_.FilterImpulseResponses(), *render_buffer, E2,
|
|
Y2, subtractor_output);
|
|
|
|
// Choose the linear output.
|
|
const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y;
|
|
|
|
data_dumper_->DumpWav("aec3_output_linear",
|
|
y->View(/*band=*/0, /*channel=*/0), 16000, 1);
|
|
data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0][0], 16000, 1);
|
|
|
|
// Estimate the comfort noise.
|
|
cng_.Compute(aec_state_.SaturatedCapture(), Y2, comfort_noise,
|
|
high_band_comfort_noise);
|
|
|
|
// Only do the below processing if the output of the audio processing module
|
|
// is used.
|
|
std::array<float, kFftLengthBy2Plus1> G;
|
|
if (capture_output_used_) {
|
|
// Estimate the residual echo power.
|
|
residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2,
|
|
suppression_gain_.IsDominantNearend(), R2,
|
|
R2_unbounded);
|
|
|
|
// Suppressor nearend estimate.
|
|
if (aec_state_.UsableLinearEstimate()) {
|
|
// E2 is bound by Y2.
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
std::transform(E2[ch].begin(), E2[ch].end(), Y2[ch].begin(),
|
|
E2[ch].begin(),
|
|
[](float a, float b) { return std::min(a, b); });
|
|
}
|
|
}
|
|
const auto& nearend_spectrum = aec_state_.UsableLinearEstimate() ? E2 : Y2;
|
|
|
|
// Suppressor echo estimate.
|
|
const auto& echo_spectrum =
|
|
aec_state_.UsableLinearEstimate() ? S2_linear : R2;
|
|
|
|
// Determine if the suppressor should assume clock drift.
|
|
const bool clock_drift = config_.echo_removal_control.has_clock_drift ||
|
|
echo_path_variability.clock_drift;
|
|
|
|
// Compute preferred gains.
|
|
float high_bands_gain;
|
|
suppression_gain_.GetGain(nearend_spectrum, echo_spectrum, R2, R2_unbounded,
|
|
cng_.NoiseSpectrum(), render_signal_analyzer_,
|
|
aec_state_, x, clock_drift, &high_bands_gain, &G);
|
|
|
|
suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G,
|
|
high_bands_gain, Y_fft, y);
|
|
|
|
} else {
|
|
G.fill(0.f);
|
|
}
|
|
|
|
// Update the metrics.
|
|
metrics_.Update(aec_state_, cng_.NoiseSpectrum()[0], G);
|
|
|
|
// Debug outputs for the purpose of development and analysis.
|
|
data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize,
|
|
&subtractor_output[0].s_refined[0], 16000, 1);
|
|
data_dumper_->DumpRaw("aec3_output", y->View(/*band=*/0, /*channel=*/0));
|
|
data_dumper_->DumpRaw("aec3_narrow_render",
|
|
render_signal_analyzer_.NarrowPeakBand() ? 1 : 0);
|
|
data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum()[0]);
|
|
data_dumper_->DumpRaw("aec3_suppressor_gain", G);
|
|
data_dumper_->DumpWav("aec3_output", y->View(/*band=*/0, /*channel=*/0),
|
|
16000, 1);
|
|
data_dumper_->DumpRaw("aec3_using_subtractor_output[0]",
|
|
aec_state_.UseLinearFilterOutput() ? 1 : 0);
|
|
data_dumper_->DumpRaw("aec3_E2", E2[0]);
|
|
data_dumper_->DumpRaw("aec3_S2_linear", S2_linear[0]);
|
|
data_dumper_->DumpRaw("aec3_Y2", Y2[0]);
|
|
data_dumper_->DumpRaw(
|
|
"aec3_X2", render_buffer->Spectrum(
|
|
aec_state_.MinDirectPathFilterDelay())[/*channel=*/0]);
|
|
data_dumper_->DumpRaw("aec3_R2", R2[0]);
|
|
data_dumper_->DumpRaw("aec3_filter_delay",
|
|
aec_state_.MinDirectPathFilterDelay());
|
|
data_dumper_->DumpRaw("aec3_capture_saturation",
|
|
aec_state_.SaturatedCapture() ? 1 : 0);
|
|
}
|
|
|
|
void EchoRemoverImpl::FormLinearFilterOutput(
|
|
const SubtractorOutput& subtractor_output,
|
|
rtc::ArrayView<float> output) {
|
|
RTC_DCHECK_EQ(subtractor_output.e_refined.size(), output.size());
|
|
RTC_DCHECK_EQ(subtractor_output.e_coarse.size(), output.size());
|
|
bool use_refined_output = true;
|
|
if (use_coarse_filter_output_) {
|
|
// As the output of the refined adaptive filter generally should be better
|
|
// than the coarse filter output, add a margin and threshold for when
|
|
// choosing the coarse filter output.
|
|
if (subtractor_output.e2_coarse < 0.9f * subtractor_output.e2_refined &&
|
|
subtractor_output.y2 > 30.f * 30.f * kBlockSize &&
|
|
(subtractor_output.s2_refined > 60.f * 60.f * kBlockSize ||
|
|
subtractor_output.s2_coarse > 60.f * 60.f * kBlockSize)) {
|
|
use_refined_output = false;
|
|
} else {
|
|
// If the refined filter is diverged, choose the filter output that has
|
|
// the lowest power.
|
|
if (subtractor_output.e2_coarse < subtractor_output.e2_refined &&
|
|
subtractor_output.y2 < subtractor_output.e2_refined) {
|
|
use_refined_output = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
SignalTransition(refined_filter_output_last_selected_
|
|
? subtractor_output.e_refined
|
|
: subtractor_output.e_coarse,
|
|
use_refined_output ? subtractor_output.e_refined
|
|
: subtractor_output.e_coarse,
|
|
output);
|
|
refined_filter_output_last_selected_ = use_refined_output;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config,
|
|
int sample_rate_hz,
|
|
size_t num_render_channels,
|
|
size_t num_capture_channels) {
|
|
return new EchoRemoverImpl(config, sample_rate_hz, num_render_channels,
|
|
num_capture_channels);
|
|
}
|
|
|
|
} // namespace webrtc
|