157 lines
5.4 KiB
C++
157 lines
5.4 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
constexpr size_t kCounterThreshold = 5;
|
|
|
|
// Identifies local bands with narrow characteristics.
|
|
void IdentifySmallNarrowBandRegions(
|
|
const RenderBuffer& render_buffer,
|
|
const absl::optional<size_t>& delay_partitions,
|
|
std::array<size_t, kFftLengthBy2 - 1>* narrow_band_counters) {
|
|
RTC_DCHECK(narrow_band_counters);
|
|
|
|
if (!delay_partitions) {
|
|
narrow_band_counters->fill(0);
|
|
return;
|
|
}
|
|
|
|
std::array<size_t, kFftLengthBy2 - 1> channel_counters;
|
|
channel_counters.fill(0);
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> X2 =
|
|
render_buffer.Spectrum(*delay_partitions);
|
|
for (size_t ch = 0; ch < X2.size(); ++ch) {
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
if (X2[ch][k] > 3 * std::max(X2[ch][k - 1], X2[ch][k + 1])) {
|
|
++channel_counters[k - 1];
|
|
}
|
|
}
|
|
}
|
|
for (size_t k = 1; k < kFftLengthBy2; ++k) {
|
|
(*narrow_band_counters)[k - 1] =
|
|
channel_counters[k - 1] > 0 ? (*narrow_band_counters)[k - 1] + 1 : 0;
|
|
}
|
|
}
|
|
|
|
// Identifies whether the signal has a single strong narrow-band component.
|
|
void IdentifyStrongNarrowBandComponent(const RenderBuffer& render_buffer,
|
|
int strong_peak_freeze_duration,
|
|
absl::optional<int>* narrow_peak_band,
|
|
size_t* narrow_peak_counter) {
|
|
RTC_DCHECK(narrow_peak_band);
|
|
RTC_DCHECK(narrow_peak_counter);
|
|
if (*narrow_peak_band &&
|
|
++(*narrow_peak_counter) >
|
|
static_cast<size_t>(strong_peak_freeze_duration)) {
|
|
*narrow_peak_band = absl::nullopt;
|
|
}
|
|
|
|
const Block& x_latest = render_buffer.GetBlock(0);
|
|
float max_peak_level = 0.f;
|
|
for (int channel = 0; channel < x_latest.NumChannels(); ++channel) {
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> X2_latest =
|
|
render_buffer.Spectrum(0)[channel];
|
|
|
|
// Identify the spectral peak.
|
|
const int peak_bin =
|
|
static_cast<int>(std::max_element(X2_latest.begin(), X2_latest.end()) -
|
|
X2_latest.begin());
|
|
|
|
// Compute the level around the peak.
|
|
float non_peak_power = 0.f;
|
|
for (int k = std::max(0, peak_bin - 14); k < peak_bin - 4; ++k) {
|
|
non_peak_power = std::max(X2_latest[k], non_peak_power);
|
|
}
|
|
for (int k = peak_bin + 5;
|
|
k < std::min(peak_bin + 15, static_cast<int>(kFftLengthBy2Plus1));
|
|
++k) {
|
|
non_peak_power = std::max(X2_latest[k], non_peak_power);
|
|
}
|
|
|
|
// Assess the render signal strength.
|
|
auto result0 = std::minmax_element(x_latest.begin(/*band=*/0, channel),
|
|
x_latest.end(/*band=*/0, channel));
|
|
float max_abs = std::max(fabs(*result0.first), fabs(*result0.second));
|
|
|
|
if (x_latest.NumBands() > 1) {
|
|
const auto result1 =
|
|
std::minmax_element(x_latest.begin(/*band=*/1, channel),
|
|
x_latest.end(/*band=*/1, channel));
|
|
max_abs =
|
|
std::max(max_abs, static_cast<float>(std::max(
|
|
fabs(*result1.first), fabs(*result1.second))));
|
|
}
|
|
|
|
// Detect whether the spectral peak has as strong narrowband nature.
|
|
const float peak_level = X2_latest[peak_bin];
|
|
if (peak_bin > 0 && max_abs > 100 && peak_level > 100 * non_peak_power) {
|
|
// Store the strongest peak across channels.
|
|
if (peak_level > max_peak_level) {
|
|
max_peak_level = peak_level;
|
|
*narrow_peak_band = peak_bin;
|
|
*narrow_peak_counter = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
RenderSignalAnalyzer::RenderSignalAnalyzer(const EchoCanceller3Config& config)
|
|
: strong_peak_freeze_duration_(config.filter.refined.length_blocks) {
|
|
narrow_band_counters_.fill(0);
|
|
}
|
|
RenderSignalAnalyzer::~RenderSignalAnalyzer() = default;
|
|
|
|
void RenderSignalAnalyzer::Update(
|
|
const RenderBuffer& render_buffer,
|
|
const absl::optional<size_t>& delay_partitions) {
|
|
// Identify bands of narrow nature.
|
|
IdentifySmallNarrowBandRegions(render_buffer, delay_partitions,
|
|
&narrow_band_counters_);
|
|
|
|
// Identify the presence of a strong narrow band.
|
|
IdentifyStrongNarrowBandComponent(render_buffer, strong_peak_freeze_duration_,
|
|
&narrow_peak_band_, &narrow_peak_counter_);
|
|
}
|
|
|
|
void RenderSignalAnalyzer::MaskRegionsAroundNarrowBands(
|
|
std::array<float, kFftLengthBy2Plus1>* v) const {
|
|
RTC_DCHECK(v);
|
|
|
|
// Set v to zero around narrow band signal regions.
|
|
if (narrow_band_counters_[0] > kCounterThreshold) {
|
|
(*v)[1] = (*v)[0] = 0.f;
|
|
}
|
|
for (size_t k = 2; k < kFftLengthBy2 - 1; ++k) {
|
|
if (narrow_band_counters_[k - 1] > kCounterThreshold) {
|
|
(*v)[k - 2] = (*v)[k - 1] = (*v)[k] = (*v)[k + 1] = (*v)[k + 2] = 0.f;
|
|
}
|
|
}
|
|
if (narrow_band_counters_[kFftLengthBy2 - 2] > kCounterThreshold) {
|
|
(*v)[kFftLengthBy2] = (*v)[kFftLengthBy2 - 1] = 0.f;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|