Kylin/Encrypt/mbedtls-3.4.0/library/sha256.c
2023-08-01 13:54:17 +08:00

940 lines
28 KiB
C

/*
* FIPS-180-2 compliant SHA-256 implementation
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
#if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
defined(__clang__) && __clang_major__ >= 4
/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
*
* The intrinsic declaration are guarded by predefined ACLE macros in clang:
* these are normally only enabled by the -march option on the command line.
* By defining the macros ourselves we gain access to those declarations without
* requiring -march on the command line.
*
* `arm_neon.h` could be included by any header file, so we put these defines
* at the top of this file, before any includes.
*/
#define __ARM_FEATURE_CRYPTO 1
/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
*
* `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
* for older compilers.
*/
#define __ARM_FEATURE_SHA2 1
#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
#endif
#include "common.h"
#if defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA224_C)
#include "mbedtls/sha256.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include <string.h>
#include "mbedtls/platform.h"
#if defined(__aarch64__)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
/* *INDENT-OFF* */
# if !defined(__ARM_FEATURE_CRYPTO) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
# if defined(__clang__)
# if __clang_major__ < 4
# error "A more recent Clang is required for MBEDTLS_SHA256_USE_A64_CRYPTO_*"
# endif
# pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
# define MBEDTLS_POP_TARGET_PRAGMA
# elif defined(__GNUC__)
/* FIXME: GCC 5 claims to support Armv8 Crypto Extensions, but some
* intrinsics are missing. Missing intrinsics could be worked around.
*/
# if __GNUC__ < 6
# error "A more recent GCC is required for MBEDTLS_SHA256_USE_A64_CRYPTO_*"
# else
# pragma GCC push_options
# pragma GCC target ("arch=armv8-a+crypto")
# define MBEDTLS_POP_TARGET_PRAGMA
# endif
# else
# error "Only GCC and Clang supported for MBEDTLS_SHA256_USE_A64_CRYPTO_*"
# endif
# endif
/* *INDENT-ON* */
# include <arm_neon.h>
# endif
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
# if defined(__unix__)
# if defined(__linux__)
/* Our preferred method of detection is getauxval() */
# include <sys/auxv.h>
# endif
/* Use SIGILL on Unix, and fall back to it on Linux */
# include <signal.h>
# endif
# endif
#elif defined(_M_ARM64)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# include <arm64_neon.h>
# endif
#else
# undef MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY
# undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT
#endif
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
/*
* Capability detection code comes early, so we can disable
* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found
*/
#if defined(HWCAP_SHA2)
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return (getauxval(AT_HWCAP) & HWCAP_SHA2) ? 1 : 0;
}
#elif defined(__APPLE__)
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return 1;
}
#elif defined(_M_ARM64)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <processthreadsapi.h>
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ?
1 : 0;
}
#elif defined(__unix__) && defined(SIG_SETMASK)
/* Detection with SIGILL, setjmp() and longjmp() */
#include <signal.h>
#include <setjmp.h>
static jmp_buf return_from_sigill;
/*
* A64 SHA256 support detection via SIGILL
*/
static void sigill_handler(int signal)
{
(void) signal;
longjmp(return_from_sigill, 1);
}
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
struct sigaction old_action, new_action;
sigset_t old_mask;
if (sigprocmask(0, NULL, &old_mask)) {
return 0;
}
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
new_action.sa_handler = sigill_handler;
sigaction(SIGILL, &new_action, &old_action);
static int ret = 0;
if (setjmp(return_from_sigill) == 0) { /* First return only */
/* If this traps, we will return a second time from setjmp() with 1 */
asm ("sha256h q0, q0, v0.4s" : : : "v0");
ret = 1;
}
sigaction(SIGILL, &old_action, NULL);
sigprocmask(SIG_SETMASK, &old_mask, NULL);
return ret;
}
#else
#warning "No mechanism to detect A64_CRYPTO found, using C code only"
#undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT
#endif /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */
#if !defined(MBEDTLS_SHA256_ALT)
#define SHA256_BLOCK_SIZE 64
void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_clone(mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src)
{
*dst = *src;
}
/*
* SHA-256 context setup
*/
int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224)
{
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
if (is224 != 0 && is224 != 1) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#elif defined(MBEDTLS_SHA256_C)
if (is224 != 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#else /* defined MBEDTLS_SHA224_C only */
if (is224 == 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#endif
ctx->total[0] = 0;
ctx->total[1] = 0;
if (is224 == 0) {
#if defined(MBEDTLS_SHA256_C)
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
#endif
} else {
#if defined(MBEDTLS_SHA224_C)
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
#endif
}
#if defined(MBEDTLS_SHA224_C)
ctx->is224 = is224;
#endif
return 0;
}
#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
static const uint32_t K[] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
#endif
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many
# define mbedtls_internal_sha256_process_a64_crypto mbedtls_internal_sha256_process
#endif
static size_t mbedtls_internal_sha256_process_many_a64_crypto(
mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len)
{
uint32x4_t abcd = vld1q_u32(&ctx->state[0]);
uint32x4_t efgh = vld1q_u32(&ctx->state[4]);
size_t processed = 0;
for (;
len >= SHA256_BLOCK_SIZE;
processed += SHA256_BLOCK_SIZE,
msg += SHA256_BLOCK_SIZE,
len -= SHA256_BLOCK_SIZE) {
uint32x4_t tmp, abcd_prev;
uint32x4_t abcd_orig = abcd;
uint32x4_t efgh_orig = efgh;
uint32x4_t sched0 = (uint32x4_t) vld1q_u8(msg + 16 * 0);
uint32x4_t sched1 = (uint32x4_t) vld1q_u8(msg + 16 * 1);
uint32x4_t sched2 = (uint32x4_t) vld1q_u8(msg + 16 * 2);
uint32x4_t sched3 = (uint32x4_t) vld1q_u8(msg + 16 * 3);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */
/* Untested on BE */
sched0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched0)));
sched1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched1)));
sched2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched2)));
sched3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched3)));
#endif
/* Rounds 0 to 3 */
tmp = vaddq_u32(sched0, vld1q_u32(&K[0]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 4 to 7 */
tmp = vaddq_u32(sched1, vld1q_u32(&K[4]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 8 to 11 */
tmp = vaddq_u32(sched2, vld1q_u32(&K[8]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 12 to 15 */
tmp = vaddq_u32(sched3, vld1q_u32(&K[12]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
for (int t = 16; t < 64; t += 16) {
/* Rounds t to t + 3 */
sched0 = vsha256su1q_u32(vsha256su0q_u32(sched0, sched1), sched2, sched3);
tmp = vaddq_u32(sched0, vld1q_u32(&K[t]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 4 to t + 7 */
sched1 = vsha256su1q_u32(vsha256su0q_u32(sched1, sched2), sched3, sched0);
tmp = vaddq_u32(sched1, vld1q_u32(&K[t + 4]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 8 to t + 11 */
sched2 = vsha256su1q_u32(vsha256su0q_u32(sched2, sched3), sched0, sched1);
tmp = vaddq_u32(sched2, vld1q_u32(&K[t + 8]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 12 to t + 15 */
sched3 = vsha256su1q_u32(vsha256su0q_u32(sched3, sched0), sched1, sched2);
tmp = vaddq_u32(sched3, vld1q_u32(&K[t + 12]));
abcd_prev = abcd;
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
}
abcd = vaddq_u32(abcd, abcd_orig);
efgh = vaddq_u32(efgh, efgh_orig);
}
vst1q_u32(&ctx->state[0], abcd);
vst1q_u32(&ctx->state[4], efgh);
return processed;
}
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
/*
* This function is for internal use only if we are building both C and A64
* versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
*/
static
#endif
int mbedtls_internal_sha256_process_a64_crypto(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
return (mbedtls_internal_sha256_process_many_a64_crypto(ctx, data,
SHA256_BLOCK_SIZE) ==
SHA256_BLOCK_SIZE) ? 0 : -1;
}
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
#if defined(__clang__)
#pragma clang attribute pop
#elif defined(__GNUC__)
#pragma GCC pop_options
#endif
#undef MBEDTLS_POP_TARGET_PRAGMA
#endif
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
#define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many
#define mbedtls_internal_sha256_process_c mbedtls_internal_sha256_process
#endif
#if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \
!defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
#define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
( \
local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \
S0(local.W[(t) - 15]) + local.W[(t) - 16] \
)
#define P(a, b, c, d, e, f, g, h, x, K) \
do \
{ \
local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \
local.temp2 = S2(a) + F0((a), (b), (c)); \
(d) += local.temp1; (h) = local.temp1 + local.temp2; \
} while (0)
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
/*
* This function is for internal use only if we are building both C and A64
* versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
*/
static
#endif
int mbedtls_internal_sha256_process_c(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
struct {
uint32_t temp1, temp2, W[64];
uint32_t A[8];
} local;
unsigned int i;
for (i = 0; i < 8; i++) {
local.A[i] = ctx->state[i];
}
#if defined(MBEDTLS_SHA256_SMALLER)
for (i = 0; i < 64; i++) {
if (i < 16) {
local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
} else {
R(i);
}
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
local.temp1 = local.A[7]; local.A[7] = local.A[6];
local.A[6] = local.A[5]; local.A[5] = local.A[4];
local.A[4] = local.A[3]; local.A[3] = local.A[2];
local.A[2] = local.A[1]; local.A[1] = local.A[0];
local.A[0] = local.temp1;
}
#else /* MBEDTLS_SHA256_SMALLER */
for (i = 0; i < 16; i++) {
local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
}
for (i = 0; i < 16; i += 8) {
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0]);
P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1]);
P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2]);
P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3]);
P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4]);
P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5]);
P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6]);
P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7]);
}
for (i = 16; i < 64; i += 8) {
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], R(i+0), K[i+0]);
P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], R(i+1), K[i+1]);
P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], R(i+2), K[i+2]);
P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], R(i+3), K[i+3]);
P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], R(i+4), K[i+4]);
P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], R(i+5), K[i+5]);
P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], R(i+6), K[i+6]);
P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], R(i+7), K[i+7]);
}
#endif /* MBEDTLS_SHA256_SMALLER */
for (i = 0; i < 8; i++) {
ctx->state[i] += local.A[i];
}
/* Zeroise buffers and variables to clear sensitive data from memory. */
mbedtls_platform_zeroize(&local, sizeof(local));
return 0;
}
#endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
static size_t mbedtls_internal_sha256_process_many_c(
mbedtls_sha256_context *ctx, const uint8_t *data, size_t len)
{
size_t processed = 0;
while (len >= SHA256_BLOCK_SIZE) {
if (mbedtls_internal_sha256_process_c(ctx, data) != 0) {
return 0;
}
data += SHA256_BLOCK_SIZE;
len -= SHA256_BLOCK_SIZE;
processed += SHA256_BLOCK_SIZE;
}
return processed;
}
#endif /* !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
static int mbedtls_a64_crypto_sha256_has_support(void)
{
static int done = 0;
static int supported = 0;
if (!done) {
supported = mbedtls_a64_crypto_sha256_determine_support();
done = 1;
}
return supported;
}
static size_t mbedtls_internal_sha256_process_many(mbedtls_sha256_context *ctx,
const uint8_t *msg, size_t len)
{
if (mbedtls_a64_crypto_sha256_has_support()) {
return mbedtls_internal_sha256_process_many_a64_crypto(ctx, msg, len);
} else {
return mbedtls_internal_sha256_process_many_c(ctx, msg, len);
}
}
int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
if (mbedtls_a64_crypto_sha256_has_support()) {
return mbedtls_internal_sha256_process_a64_crypto(ctx, data);
} else {
return mbedtls_internal_sha256_process_c(ctx, data);
}
}
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */
/*
* SHA-256 process buffer
*/
int mbedtls_sha256_update(mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t fill;
uint32_t left;
if (ilen == 0) {
return 0;
}
left = ctx->total[0] & 0x3F;
fill = SHA256_BLOCK_SIZE - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *) (ctx->buffer + left), input, fill);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= SHA256_BLOCK_SIZE) {
size_t processed =
mbedtls_internal_sha256_process_many(ctx, input, ilen);
if (processed < SHA256_BLOCK_SIZE) {
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
input += processed;
ilen -= processed;
}
if (ilen > 0) {
memcpy((void *) (ctx->buffer + left), input, ilen);
}
return 0;
}
/*
* SHA-256 final digest
*/
int mbedtls_sha256_finish(mbedtls_sha256_context *ctx,
unsigned char *output)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
uint32_t used;
uint32_t high, low;
/*
* Add padding: 0x80 then 0x00 until 8 bytes remain for the length
*/
used = ctx->total[0] & 0x3F;
ctx->buffer[used++] = 0x80;
if (used <= 56) {
/* Enough room for padding + length in current block */
memset(ctx->buffer + used, 0, 56 - used);
} else {
/* We'll need an extra block */
memset(ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
memset(ctx->buffer, 0, 56);
}
/*
* Add message length
*/
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
MBEDTLS_PUT_UINT32_BE(low, ctx->buffer, 60);
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
/*
* Output final state
*/
MBEDTLS_PUT_UINT32_BE(ctx->state[0], output, 0);
MBEDTLS_PUT_UINT32_BE(ctx->state[1], output, 4);
MBEDTLS_PUT_UINT32_BE(ctx->state[2], output, 8);
MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
MBEDTLS_PUT_UINT32_BE(ctx->state[5], output, 20);
MBEDTLS_PUT_UINT32_BE(ctx->state[6], output, 24);
int truncated = 0;
#if defined(MBEDTLS_SHA224_C)
truncated = ctx->is224;
#endif
if (!truncated) {
MBEDTLS_PUT_UINT32_BE(ctx->state[7], output, 28);
}
return 0;
}
#endif /* !MBEDTLS_SHA256_ALT */
/*
* output = SHA-256( input buffer )
*/
int mbedtls_sha256(const unsigned char *input,
size_t ilen,
unsigned char *output,
int is224)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_sha256_context ctx;
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
if (is224 != 0 && is224 != 1) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#elif defined(MBEDTLS_SHA256_C)
if (is224 != 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#else /* defined MBEDTLS_SHA224_C only */
if (is224 == 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#endif
mbedtls_sha256_init(&ctx);
if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
goto exit;
}
if ((ret = mbedtls_sha256_update(&ctx, input, ilen)) != 0) {
goto exit;
}
if ((ret = mbedtls_sha256_finish(&ctx, output)) != 0) {
goto exit;
}
exit:
mbedtls_sha256_free(&ctx);
return ret;
}
#if defined(MBEDTLS_SELF_TEST)
/*
* FIPS-180-2 test vectors
*/
static const unsigned char sha_test_buf[3][57] =
{
{ "abc" },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
{ "" }
};
static const size_t sha_test_buflen[3] =
{
3, 56, 1000
};
typedef const unsigned char (sha_test_sum_t)[32];
/*
* SHA-224 test vectors
*/
#if defined(MBEDTLS_SHA224_C)
static sha_test_sum_t sha224_test_sum[] =
{
{ 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
0xE3, 0x6C, 0x9D, 0xA7 },
{ 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
0x52, 0x52, 0x25, 0x25 },
{ 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
0x4E, 0xE7, 0xAD, 0x67 }
};
#endif
/*
* SHA-256 test vectors
*/
#if defined(MBEDTLS_SHA256_C)
static sha_test_sum_t sha256_test_sum[] =
{
{ 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
{ 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
{ 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
};
#endif
/*
* Checkup routine
*/
static int mbedtls_sha256_common_self_test(int verbose, int is224)
{
int i, buflen, ret = 0;
unsigned char *buf;
unsigned char sha256sum[32];
mbedtls_sha256_context ctx;
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
sha_test_sum_t *sha_test_sum = (is224) ? sha224_test_sum : sha256_test_sum;
#elif defined(MBEDTLS_SHA256_C)
sha_test_sum_t *sha_test_sum = sha256_test_sum;
#else
sha_test_sum_t *sha_test_sum = sha224_test_sum;
#endif
buf = mbedtls_calloc(1024, sizeof(unsigned char));
if (NULL == buf) {
if (verbose != 0) {
mbedtls_printf("Buffer allocation failed\n");
}
return 1;
}
mbedtls_sha256_init(&ctx);
for (i = 0; i < 3; i++) {
if (verbose != 0) {
mbedtls_printf(" SHA-%d test #%d: ", 256 - is224 * 32, i + 1);
}
if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
goto fail;
}
if (i == 2) {
memset(buf, 'a', buflen = 1000);
for (int j = 0; j < 1000; j++) {
ret = mbedtls_sha256_update(&ctx, buf, buflen);
if (ret != 0) {
goto fail;
}
}
} else {
ret = mbedtls_sha256_update(&ctx, sha_test_buf[i],
sha_test_buflen[i]);
if (ret != 0) {
goto fail;
}
}
if ((ret = mbedtls_sha256_finish(&ctx, sha256sum)) != 0) {
goto fail;
}
if (memcmp(sha256sum, sha_test_sum[i], 32 - is224 * 4) != 0) {
ret = 1;
goto fail;
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
}
if (verbose != 0) {
mbedtls_printf("\n");
}
goto exit;
fail:
if (verbose != 0) {
mbedtls_printf("failed\n");
}
exit:
mbedtls_sha256_free(&ctx);
mbedtls_free(buf);
return ret;
}
#if defined(MBEDTLS_SHA256_C)
int mbedtls_sha256_self_test(int verbose)
{
return mbedtls_sha256_common_self_test(verbose, 0);
}
#endif /* MBEDTLS_SHA256_C */
#if defined(MBEDTLS_SHA224_C)
int mbedtls_sha224_self_test(int verbose)
{
return mbedtls_sha256_common_self_test(verbose, 1);
}
#endif /* MBEDTLS_SHA224_C */
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_SHA256_C || MBEDTLS_SHA224_C */