Older/MediaServer/Rtmp/amf.cpp

693 lines
17 KiB
C++
Raw Normal View History

2024-09-28 23:55:00 +08:00
/*
* Copyright (c) 2016-present The ZLMediaKit project authors. All Rights Reserved.
*
* This file is part of ZLMediaKit(https://github.com/ZLMediaKit/ZLMediaKit).
*
* Use of this source code is governed by MIT-like license that can be found in the
* LICENSE file in the root of the source tree. All contributing project authors
* may be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <stdexcept>
#include "amf.h"
#include "utils.h"
#include "Util/util.h"
#include "Util/logger.h"
#include "Network/sockutil.h"
#include "Network/Buffer.h"
using namespace std;
using namespace toolkit;
/////////////////////AMFValue/////////////////////////////
inline void AMFValue::destroy() {
switch (_type) {
case AMF_STRING:
if (_value.string) {
delete _value.string;
_value.string = nullptr;
}
break;
case AMF_OBJECT:
case AMF_ECMA_ARRAY:
if (_value.object) {
delete _value.object;
_value.object = nullptr;
}
break;
case AMF_STRICT_ARRAY:
if (_value.array) {
delete _value.array;
_value.array = nullptr;
}
break;
default:
break;
}
}
inline void AMFValue::init() {
switch (_type) {
case AMF_OBJECT:
case AMF_ECMA_ARRAY:
_value.object = new mapType;
break;
case AMF_STRING:
_value.string = new std::string;
break;
case AMF_STRICT_ARRAY:
_value.array = new arrayType;
break;
default:
break;
}
}
AMFValue::AMFValue(AMFType type) :
_type(type) {
init();
}
AMFValue::~AMFValue() {
destroy();
}
AMFValue::AMFValue(const char *s) :
_type(AMF_STRING) {
init();
*_value.string = s;
}
AMFValue::AMFValue(const std::string &s) :
_type(AMF_STRING) {
init();
*_value.string = s;
}
AMFValue::AMFValue(double n) :
_type(AMF_NUMBER) {
init();
_value.number = n;
}
AMFValue::AMFValue(int i) :
_type(AMF_INTEGER) {
init();
_value.integer = i;
}
AMFValue::AMFValue(bool b) :
_type(AMF_BOOLEAN) {
init();
_value.boolean = b;
}
AMFValue::AMFValue(const AMFValue &from) :
_type(AMF_NULL) {
*this = from;
}
AMFValue& AMFValue::operator = (const AMFValue &from) {
destroy();
_type = from._type;
init();
switch (_type) {
case AMF_STRING:
*_value.string = (*from._value.string);
break;
case AMF_OBJECT:
case AMF_ECMA_ARRAY:
*_value.object = (*from._value.object);
break;
case AMF_STRICT_ARRAY:
*_value.array = (*from._value.array);
break;
case AMF_NUMBER:
_value.number = from._value.number;
break;
case AMF_INTEGER:
_value.integer = from._value.integer;
break;
case AMF_BOOLEAN:
_value.boolean = from._value.boolean;
break;
default:
break;
}
return *this;
}
void AMFValue::clear() {
switch (_type) {
case AMF_STRING:
_value.string->clear();
break;
case AMF_OBJECT:
case AMF_ECMA_ARRAY:
_value.object->clear();
break;
default:
break;
}
}
AMFType AMFValue::type() const {
return _type;
}
const std::string &AMFValue::as_string() const {
if(_type != AMF_STRING){
throw std::runtime_error("AMF not a string");
}
return *_value.string;
}
double AMFValue::as_number() const {
switch (_type) {
case AMF_NUMBER:
return _value.number;
case AMF_INTEGER:
return _value.integer;
case AMF_BOOLEAN:
return _value.boolean;
default:
throw std::runtime_error("AMF not a number");
}
}
int AMFValue::as_integer() const {
switch (_type) {
case AMF_NUMBER:
return (int)_value.number;
case AMF_INTEGER:
return _value.integer;
case AMF_BOOLEAN:
return _value.boolean;
default:
throw std::runtime_error("AMF not a integer");
}
}
bool AMFValue::as_boolean() const {
switch (_type) {
case AMF_NUMBER:
return _value.number;
case AMF_INTEGER:
return _value.integer;
case AMF_BOOLEAN:
return _value.boolean;
default:
throw std::runtime_error("AMF not a boolean");
}
}
string AMFValue::to_string() const{
switch (_type) {
case AMF_NUMBER:
return StrPrinter << _value.number;
case AMF_INTEGER:
return StrPrinter << _value.integer;
case AMF_BOOLEAN:
return _value.boolean ? "true" : "false";
case AMF_STRING:
return *(_value.string);
case AMF_OBJECT:
return "object";
case AMF_NULL:
return "null";
case AMF_UNDEFINED:
return "undefined";
case AMF_ECMA_ARRAY:
return "ecma_array";
case AMF_STRICT_ARRAY:
return "strict_array";
default:
throw std::runtime_error("can not convert to string ");
}
}
const AMFValue& AMFValue::operator[](const char *str) const {
if (_type != AMF_OBJECT && _type != AMF_ECMA_ARRAY) {
throw std::runtime_error("AMF not a object");
}
auto i = _value.object->find(str);
if (i == _value.object->end()) {
static AMFValue val(AMF_NULL);
return val;
}
return i->second;
}
void AMFValue::object_for_each(const function<void(const string &key, const AMFValue &val)> &fun) const {
if (_type != AMF_OBJECT && _type != AMF_ECMA_ARRAY) {
throw std::runtime_error("AMF not a object");
}
for (auto & pr : *(_value.object)) {
fun(pr.first, pr.second);
}
}
AMFValue::operator bool() const{
return _type != AMF_NULL;
}
void AMFValue::set(const std::string &s, const AMFValue &val) {
if (_type != AMF_OBJECT && _type != AMF_ECMA_ARRAY) {
throw std::runtime_error("AMF not a object");
}
_value.object->emplace(s, val);
}
void AMFValue::add(const AMFValue &val) {
if (_type != AMF_STRICT_ARRAY) {
throw std::runtime_error("AMF not a array");
}
assert(_type == AMF_STRICT_ARRAY);
_value.array->push_back(val);
}
const AMFValue::mapType &AMFValue::getMap() const {
if (_type != AMF_OBJECT && _type != AMF_ECMA_ARRAY) {
throw std::runtime_error("AMF not a object");
}
return *_value.object;
}
const AMFValue::arrayType &AMFValue::getArr() const {
if (_type != AMF_STRICT_ARRAY) {
throw std::runtime_error("AMF not a array");
}
return *_value.array;
}
///////////////////////////////////////////////////////////////////////////
enum {
AMF0_NUMBER,
AMF0_BOOLEAN,
AMF0_STRING,
AMF0_OBJECT,
AMF0_MOVIECLIP,
AMF0_NULL,
AMF0_UNDEFINED,
AMF0_REFERENCE,
AMF0_ECMA_ARRAY,
AMF0_OBJECT_END,
AMF0_STRICT_ARRAY,
AMF0_DATE,
AMF0_LONG_STRING,
AMF0_UNSUPPORTED,
AMF0_RECORD_SET,
AMF0_XML_OBJECT,
AMF0_TYPED_OBJECT,
AMF0_SWITCH_AMF3,
};
enum {
AMF3_UNDEFINED,
AMF3_NULL,
AMF3_FALSE,
AMF3_TRUE,
AMF3_INTEGER,
AMF3_NUMBER,
AMF3_STRING,
AMF3_LEGACY_XML,
AMF3_DATE,
AMF3_ARRAY,
AMF3_OBJECT,
AMF3_XML,
AMF3_BYTE_ARRAY,
};
////////////////////////////////Encoder//////////////////////////////////////////
AMFEncoder & AMFEncoder::operator <<(const char *s) {
if (s) {
buf += char(AMF0_STRING);
auto len = strlen(s);
assert(len <= 0xFFFF);
uint16_t str_len = htons((uint16_t)len);
buf.append((char *) &str_len, 2);
buf += s;
} else {
buf += char(AMF0_NULL);
}
return *this;
}
AMFEncoder & AMFEncoder::operator <<(const std::string &s) {
if (!s.empty()) {
buf += char(AMF0_STRING);
assert(s.size() <= 0xFFFF);
uint16_t str_len = htons((uint16_t)s.size());
buf.append((char *) &str_len, 2);
buf += s;
} else {
buf += char(AMF0_NULL);
}
return *this;
}
AMFEncoder & AMFEncoder::operator <<(std::nullptr_t) {
buf += char(AMF0_NULL);
return *this;
}
AMFEncoder & AMFEncoder::write_undefined() {
buf += char(AMF0_UNDEFINED);
return *this;
}
AMFEncoder & AMFEncoder::operator <<(const int n){
return (*this) << (double)n;
}
AMFEncoder & AMFEncoder::operator <<(const double n) {
buf += char(AMF0_NUMBER);
uint64_t encoded = 0;
memcpy(&encoded, &n, 8);
uint32_t val = htonl(encoded >> 32);
buf.append((char *) &val, 4);
val = htonl(encoded & 0xFFFFFFFF);
buf.append((char *) &val, 4);
return *this;
}
AMFEncoder & AMFEncoder::operator <<(const bool b) {
buf += char(AMF0_BOOLEAN);
buf += char(b);
return *this;
}
AMFEncoder & AMFEncoder::operator <<(const AMFValue& value) {
switch ((int) value.type()) {
case AMF_STRING:
*this << value.as_string();
break;
case AMF_NUMBER:
*this << value.as_number();
break;
case AMF_INTEGER:
*this << value.as_integer();
break;
case AMF_BOOLEAN:
*this << value.as_boolean();
break;
case AMF_OBJECT: {
buf += char(AMF0_OBJECT);
for (auto &pr : value.getMap()) {
write_key(pr.first);
*this << pr.second;
}
write_key("");
buf += char(AMF0_OBJECT_END);
}
break;
case AMF_ECMA_ARRAY: {
buf += char(AMF0_ECMA_ARRAY);
uint32_t sz = htonl((uint32_t)value.getMap().size());
buf.append((char *) &sz, 4);
for (auto &pr : value.getMap()) {
write_key(pr.first);
*this << pr.second;
}
write_key("");
buf += char(AMF0_OBJECT_END);
}
break;
case AMF_NULL:
*this << nullptr;
break;
case AMF_UNDEFINED:
this->write_undefined();
break;
case AMF_STRICT_ARRAY: {
buf += char(AMF0_STRICT_ARRAY);
uint32_t sz = htonl((uint32_t)value.getArr().size());
buf.append((char *) &sz, 4);
for (auto &val : value.getArr()) {
*this << val;
}
//write_key("");
//buf += char(AMF0_OBJECT_END);
}
break;
}
return *this;
}
void AMFEncoder::write_key(const std::string& s) {
assert(s.size() <= 0xFFFF);
uint16_t str_len = htons((uint16_t)s.size());
buf.append((char *) &str_len, 2);
buf += s;
}
void AMFEncoder::clear() {
buf.clear();
}
const std::string& AMFEncoder::data() const {
return buf;
}
//////////////////Decoder//////////////////
uint8_t AMFDecoder::front() {
if (pos >= buf.size()) {
throw std::runtime_error("Not enough data");
}
return uint8_t(buf[pos]);
}
uint8_t AMFDecoder::pop_front() {
if (version == 0 && front() == AMF0_SWITCH_AMF3) {
InfoL << "entering AMF3 mode";
pos++;
version = 3;
}
if (pos >= buf.size()) {
throw std::runtime_error("Not enough data");
}
return uint8_t(buf[pos++]);
}
template<>
double AMFDecoder::load<double>() {
if (pop_front() != AMF0_NUMBER) {
throw std::runtime_error("Expected a number");
}
if (pos + 8 > buf.size()) {
throw std::runtime_error("Not enough data");
}
uint64_t val = ((uint64_t) load_be32(&buf[pos]) << 32) | load_be32(&buf[pos + 4]);
double n = 0;
static_assert(sizeof(n) == sizeof(val), "sizeof(double) not eq sizeof(uint64_t)");
memcpy(&n, &val, sizeof(n));
pos += 8;
return n;
}
template<>
bool AMFDecoder::load<bool>() {
if (pop_front() != AMF0_BOOLEAN) {
throw std::runtime_error("Expected a boolean");
}
return pop_front() != 0;
}
template<>
unsigned int AMFDecoder::load<unsigned int>() {
unsigned int value = 0;
for (int i = 0; i < 4; ++i) {
uint8_t b = pop_front();
if (i == 3) {
/* use all bits from 4th byte */
value = (value << 8) | b;
break;
}
value = (value << 7) | (b & 0x7f);
if ((b & 0x80) == 0)
break;
}
return value;
}
template<>
int AMFDecoder::load<int>() {
if (version == 3) {
return (int)load<unsigned int>();
} else {
return (int)load<double>();
}
}
template<>
std::string AMFDecoder::load<std::string>() {
size_t str_len = 0;
uint8_t type = pop_front();
if (version == 3) {
if (type != AMF3_STRING) {
throw std::runtime_error("Expected a string");
}
str_len = load<unsigned int>() / 2;
} else {
if (type != AMF0_STRING) {
throw std::runtime_error("Expected a string");
}
if (pos + 2 > buf.size()) {
throw std::runtime_error("Not enough data");
}
str_len = load_be16(&buf[pos]);
pos += 2;
}
if (pos + str_len > buf.size()) {
throw std::runtime_error("Not enough data");
}
std::string s = buf.substr(pos, str_len);
pos += str_len;
return s;
}
template<>
AMFValue AMFDecoder::load<AMFValue>() {
uint8_t type = front();
if (version == 3) {
switch (type) {
case AMF3_STRING:
return load<std::string>();
case AMF3_NUMBER:
return load<double>();
case AMF3_INTEGER:
return load<int>();
case AMF3_FALSE:
pos++;
return false;
case AMF3_TRUE:
pos++;
return true;
case AMF3_OBJECT:
return load_object();
case AMF3_ARRAY:
return load_ecma();
case AMF3_NULL:
pos++;
return AMF_NULL;
case AMF3_UNDEFINED:
pos++;
return AMF_UNDEFINED;
default:
throw std::runtime_error(
StrPrinter << "Unsupported AMF3 type:" << (int) type << endl);
}
} else {
switch (type) {
case AMF0_STRING:
return load<std::string>();
case AMF0_NUMBER:
return load<double>();
case AMF0_BOOLEAN:
return load<bool>();
case AMF0_OBJECT:
return load_object();
case AMF0_ECMA_ARRAY:
return load_ecma();
case AMF0_NULL:
pos++;
return AMF_NULL;
case AMF0_UNDEFINED:
pos++;
return AMF_UNDEFINED;
case AMF0_STRICT_ARRAY:
return load_arr();
default:
throw std::runtime_error(
StrPrinter << "Unsupported AMF type:" << (int) type << endl);
}
}
}
std::string AMFDecoder::load_key() {
if (pos + 2 > buf.size()) {
throw std::runtime_error("Not enough data");
}
size_t str_len = load_be16(&buf[pos]);
pos += 2;
if (pos + str_len > buf.size()) {
throw std::runtime_error("Not enough data");
}
std::string s = buf.substr(pos, str_len);
pos += str_len;
return s;
}
AMFValue AMFDecoder::load_object() {
AMFValue object(AMF_OBJECT);
if (pop_front() != AMF0_OBJECT) {
throw std::runtime_error("Expected an object");
}
while (1) {
std::string key = load_key();
if (key.empty())
break;
AMFValue value = load<AMFValue>();
object.set(key, value);
}
if (pop_front() != AMF0_OBJECT_END) {
throw std::runtime_error("expected object end");
}
return object;
}
AMFValue AMFDecoder::load_ecma() {
/* ECMA array is the same as object, with 4 extra zero bytes */
AMFValue object(AMF_ECMA_ARRAY);
if (pop_front() != AMF0_ECMA_ARRAY) {
throw std::runtime_error("Expected an ECMA array");
}
if (pos + 4 > buf.size()) {
throw std::runtime_error("Not enough data");
}
pos += 4;
while (1) {
std::string key = load_key();
if (key.empty())
break;
AMFValue value = load<AMFValue>();
object.set(key, value);
}
if (pop_front() != AMF0_OBJECT_END) {
throw std::runtime_error("expected object end");
}
return object;
}
AMFValue AMFDecoder::load_arr() {
/* ECMA array is the same as object, with 4 extra zero bytes */
AMFValue object(AMF_STRICT_ARRAY);
if (pop_front() != AMF0_STRICT_ARRAY) {
throw std::runtime_error("Expected an STRICT array");
}
if (pos + 4 > buf.size()) {
throw std::runtime_error("Not enough data");
}
int arrSize = load_be32(&buf[pos]);
pos += 4;
while (arrSize--) {
AMFValue value = load<AMFValue>();
object.add(value);
}
/*pos += 2;
if (pop_front() != AMF0_OBJECT_END) {
throw std::runtime_error("expected object end");
}*/
return object;
}
AMFDecoder::AMFDecoder(const BufferLikeString &buf_in, size_t pos_in, int version_in) :
buf(buf_in), pos(pos_in), version(version_in) {
}