Older/MediaServer/libflv/source/hevc-annexbtomp4.c

475 lines
14 KiB
C
Raw Normal View History

2024-10-01 00:12:57 +08:00
#include "mpeg4-hevc.h"
#include "mpeg4-avc.h"
#include <string.h>
#include <assert.h>
#include <errno.h>
#define H265_NAL_BLA_W_LP 16
#define H265_NAL_RSV_IRAP 23
#define H265_NAL_VPS 32
#define H265_NAL_SPS 33
#define H265_NAL_PPS 34
#define H265_NAL_AUD 35
#define H265_NAL_SEI_PREFIX 39
#define H265_NAL_SEI_SUFFIX 40
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define BIT(ptr, off) (((ptr)[(off) / 8] >> (7 - ((off) % 8))) & 0x01)
struct h265_annexbtomp4_handle_t
{
struct mpeg4_hevc_t* hevc;
int errcode;
int* update; // avc sps/pps update flags
int* vcl;
uint8_t* out;
size_t bytes;
size_t capacity;
};
uint8_t mpeg4_h264_read_ue(const uint8_t* data, size_t bytes, size_t* offset);
static size_t hevc_rbsp_decode(const uint8_t* nalu, size_t bytes, uint8_t* sodb, size_t len)
{
size_t i, j;
const size_t max_sps_luma_bit_depth_offset = 256;
for (j = i = 0; i < bytes && j < len && i < max_sps_luma_bit_depth_offset; i++)
{
if (i + 2 < bytes && 0 == nalu[i] && 0 == nalu[i + 1] && 0x03 == nalu[i + 2])
{
sodb[j++] = nalu[i];
sodb[j++] = nalu[i + 1];
i += 2;
}
else
{
sodb[j++] = nalu[i];
}
}
return j;
}
static int hevc_profile_tier_level(const uint8_t* nalu, size_t bytes, uint8_t maxNumSubLayersMinus1, struct mpeg4_hevc_t* hevc)
{
size_t n;
uint8_t i;
uint8_t sub_layer_profile_present_flag[8];
uint8_t sub_layer_level_present_flag[8];
if (bytes < 12)
return -1;
hevc->general_profile_space = (nalu[0] >> 6) & 0x03;
hevc->general_tier_flag = (nalu[0] >> 5) & 0x01;
hevc->general_profile_idc = nalu[0] & 0x1f;
hevc->general_profile_compatibility_flags = 0;
hevc->general_profile_compatibility_flags |= nalu[1] << 24;
hevc->general_profile_compatibility_flags |= nalu[2] << 16;
hevc->general_profile_compatibility_flags |= nalu[3] << 8;
hevc->general_profile_compatibility_flags |= nalu[4];
hevc->general_constraint_indicator_flags = 0;
hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[5]) << 40;
hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[6]) << 32;
hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[7]) << 24;
hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[8]) << 16;
hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[9]) << 8;
hevc->general_constraint_indicator_flags |= nalu[10];
hevc->general_level_idc = nalu[11];
if (maxNumSubLayersMinus1 < 1)
return 12;
if (bytes < 14)
return -1; // error
for (i = 0; i < maxNumSubLayersMinus1; i++)
{
sub_layer_profile_present_flag[i] = BIT(nalu, 12 * 8 + i * 2);
sub_layer_level_present_flag[i] = BIT(nalu, 12 * 8 + i * 2 + 1);
}
n = 12 + 2;
for (i = 0; i < maxNumSubLayersMinus1; i++)
{
if(sub_layer_profile_present_flag[i])
n += 11;
if (sub_layer_level_present_flag[i])
n += 1;
}
return bytes >= n ? (int)n : -1;
}
static uint8_t hevc_vps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len)
{
size_t sodb;
uint8_t vps;
uint8_t vps_max_sub_layers_minus1;
uint8_t vps_temporal_id_nesting_flag;
sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len);
if (sodb < 16 + 2)
return 0xFF;
vps = ptr[2] >> 4; // 2-nalu type
vps_max_sub_layers_minus1 = (ptr[3] >> 1) & 0x07;
vps_temporal_id_nesting_flag = ptr[3] & 0x01;
hevc->numTemporalLayers = MAX(hevc->numTemporalLayers, vps_max_sub_layers_minus1 + 1);
hevc->temporalIdNested = (hevc->temporalIdNested || vps_temporal_id_nesting_flag) ? 1 : 0;
hevc_profile_tier_level(ptr + 6, sodb - 6, vps_max_sub_layers_minus1, hevc);
return vps;
}
static uint8_t hevc_sps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len, uint8_t* vps)
{
size_t n;
size_t sodb;
uint8_t sps;
uint8_t sps_max_sub_layers_minus1;
uint8_t sps_temporal_id_nesting_flag;
uint8_t conformance_window_flag;
sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len);
if (sodb < 12+3)
return 0xFF;
*vps = ptr[2] >> 4; // 2-nalu type
sps_max_sub_layers_minus1 = (ptr[2] >> 1) & 0x07;
sps_temporal_id_nesting_flag = ptr[2] & 0x01;
n = hevc_profile_tier_level(ptr + 3, sodb - 3, sps_max_sub_layers_minus1, hevc);
if (n <= 0)
return 0xFF;
n = (n + 3) * 8;
sps = mpeg4_h264_read_ue(ptr, sodb, &n);
hevc->chromaFormat = mpeg4_h264_read_ue(ptr, sodb, &n);
if (3 == hevc->chromaFormat)
n++;
mpeg4_h264_read_ue(ptr, sodb, &n); // pic_width_in_luma_samples
mpeg4_h264_read_ue(ptr, sodb, &n); // pic_height_in_luma_samples
conformance_window_flag = BIT(ptr, n); n++; // conformance_window_flag
if (conformance_window_flag)
{
mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_left_offset
mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_right_offset
mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_top_offset
mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_bottom_offset
}
hevc->bitDepthLumaMinus8 = mpeg4_h264_read_ue(ptr, sodb, &n);
hevc->bitDepthChromaMinus8 = mpeg4_h264_read_ue(ptr, sodb, &n);
// TODO: vui_parameters
//mp4->hevc->min_spatial_segmentation_idc; // min_spatial_segmentation_idc
return sps;
}
static uint8_t hevc_pps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len, uint8_t* sps)
{
uint8_t pps;
size_t sodb;
size_t offset = 2 * 8; // 2-nalu type
sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len);
if (sodb < 3)
return 0xFF; (void)hevc;
pps = mpeg4_h264_read_ue(ptr, sodb, &offset);
*sps = mpeg4_h264_read_ue(ptr, sodb, &offset);
return pps;
}
static void mpeg4_hevc_remove(struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t bytes, const uint8_t* end)
{
uint8_t i;
assert(ptr >= hevc->data && ptr + bytes <= end && end <= hevc->data + sizeof(hevc->data));
memmove(ptr, ptr + bytes, end - ptr - bytes);
for (i = 0; i < hevc->numOfArrays; i++)
{
if (hevc->nalu[i].data > ptr)
hevc->nalu[i].data -= bytes;
}
}
static int mpeg4_hevc_update2(struct mpeg4_hevc_t* hevc, int i, const uint8_t* nalu, size_t bytes)
{
if (bytes == hevc->nalu[i].bytes && 0 == memcmp(nalu, hevc->nalu[i].data, bytes))
return 0; // do nothing
if (bytes > hevc->nalu[i].bytes && hevc->off + (bytes - hevc->nalu[i].bytes) > sizeof(hevc->data))
{
assert(0);
return -1; // too big
}
mpeg4_hevc_remove(hevc, hevc->nalu[i].data, hevc->nalu[i].bytes, hevc->data + hevc->off);
hevc->off -= hevc->nalu[i].bytes;
hevc->nalu[i].data = hevc->data + hevc->off;
hevc->nalu[i].bytes = (uint16_t)bytes;
memcpy(hevc->nalu[i].data, nalu, bytes);
hevc->off += bytes;
return 1;
}
static int mpeg4_hevc_add(struct mpeg4_hevc_t* hevc, uint8_t type, const uint8_t* nalu, size_t bytes)
{
// copy new
assert(hevc->numOfArrays < sizeof(hevc->nalu) / sizeof(hevc->nalu[0]));
if (hevc->numOfArrays >= sizeof(hevc->nalu) / sizeof(hevc->nalu[0])
|| hevc->off + bytes > sizeof(hevc->data))
{
assert(0);
return -1;
}
hevc->nalu[hevc->numOfArrays].type = type;
hevc->nalu[hevc->numOfArrays].bytes = (uint16_t)bytes;
hevc->nalu[hevc->numOfArrays].array_completeness = 1;
hevc->nalu[hevc->numOfArrays].data = hevc->data + hevc->off;
memcpy(hevc->nalu[hevc->numOfArrays].data, nalu, bytes);
hevc->off += bytes;
++hevc->numOfArrays;
return 1;
}
static int h265_vps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes)
{
int i;
uint8_t vpsid;
if (bytes < 3)
{
assert(0);
return -1; // invalid length
}
vpsid = hevc_vps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data)-hevc->off);
for (i = 0; i < hevc->numOfArrays; i++)
{
if (H265_NAL_VPS == hevc->nalu[i].type && vpsid == hevc_vps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off))
return mpeg4_hevc_update2(hevc, i, nalu, bytes);
}
return mpeg4_hevc_add(hevc, H265_NAL_VPS, nalu, bytes);
}
static int h265_sps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes)
{
int i;
uint8_t spsid;
uint8_t vpsid, vpsid2;
if (bytes < 13 + 2)
{
assert(0);
return -1; // invalid length
}
spsid = hevc_sps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &vpsid);
for (i = 0; i < hevc->numOfArrays; i++)
{
if (H265_NAL_SPS == hevc->nalu[i].type && spsid == hevc_sps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &vpsid2) && vpsid == vpsid2)
return mpeg4_hevc_update2(hevc, i, nalu, bytes);
}
return mpeg4_hevc_add(hevc, H265_NAL_SPS, nalu, bytes);
}
static int h265_pps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes)
{
int i;
uint8_t ppsid;
uint8_t spsid, spsid2;
if (bytes < 1 + 2)
{
assert(0);
return -1; // invalid length
}
ppsid = hevc_pps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &spsid);
for (i = 0; i < hevc->numOfArrays; i++)
{
if (H265_NAL_PPS == hevc->nalu[i].type && ppsid == hevc_pps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &spsid2) && spsid == spsid2)
return mpeg4_hevc_update2(hevc, i, nalu, bytes);
}
return mpeg4_hevc_add(hevc, H265_NAL_PPS, nalu, bytes);
}
static int h265_sei_clear(struct mpeg4_hevc_t* hevc)
{
int i;
for (i = 0; i < hevc->numOfArrays; i++)
{
if (H265_NAL_SEI_PREFIX == hevc->nalu[i].type || H265_NAL_SEI_SUFFIX == hevc->nalu[i].type)
{
mpeg4_hevc_remove(hevc, hevc->nalu[i].data, hevc->nalu[i].bytes, hevc->data + hevc->off);
hevc->off -= hevc->nalu[i].bytes;
if(i + 1 < hevc->numOfArrays)
memmove(hevc->nalu + i, hevc->nalu + i + 1, sizeof(hevc->nalu[0]) * (hevc->numOfArrays - i - 1));
--hevc->numOfArrays;
--i;
}
}
return 0;
}
int mpeg4_hevc_update(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes)
{
int r;
switch ((nalu[0] >> 1) & 0x3f)
{
case H265_NAL_VPS:
h265_sei_clear(hevc); // remove all prefix/suffix sei
r = h265_vps_copy(hevc, nalu, bytes);
break;
case H265_NAL_SPS:
r = h265_sps_copy(hevc, nalu, bytes);
break;
case H265_NAL_PPS:
r = h265_pps_copy(hevc, nalu, bytes);
break;
#if defined(H265_FILTER_SEI)
case H265_NAL_SEI_PREFIX:
r = mpeg4_hevc_add(hevc, H265_NAL_SEI_PREFIX, nalu, bytes);
break;
case H265_NAL_SEI_SUFFIX:
r = mpeg4_hevc_add(hevc, H265_NAL_SEI_SUFFIX, nalu, bytes);
break;
#endif
default:
r = 0;
break;
}
return r;
}
static void hevc_handler(void* param, const uint8_t* nalu, size_t bytes)
{
int r;
uint8_t nalutype;
struct h265_annexbtomp4_handle_t* mp4;
mp4 = (struct h265_annexbtomp4_handle_t*)param;
if (bytes < 2)
{
assert(0);
return;
}
nalutype = (nalu[0] >> 1) & 0x3f;
#if defined(H2645_FILTER_AUD)
if(H265_NAL_AUD == nalutype)
return; // ignore AUD
#endif
r = mpeg4_hevc_update(mp4->hevc, nalu, bytes);
if (1 == r && mp4->update)
*mp4->update = 1;
else if (r < 0)
mp4->errcode = r;
// IRAP-1, B/P-2, other-0
if (mp4->vcl && nalutype < H265_NAL_VPS)
*mp4->vcl = H265_NAL_BLA_W_LP<=nalutype && nalutype<=H265_NAL_RSV_IRAP ? 1 : 2;
if (mp4->capacity >= mp4->bytes + bytes + 4)
{
mp4->out[mp4->bytes + 0] = (uint8_t)((bytes >> 24) & 0xFF);
mp4->out[mp4->bytes + 1] = (uint8_t)((bytes >> 16) & 0xFF);
mp4->out[mp4->bytes + 2] = (uint8_t)((bytes >> 8) & 0xFF);
mp4->out[mp4->bytes + 3] = (uint8_t)((bytes >> 0) & 0xFF);
memmove(mp4->out + mp4->bytes + 4, nalu, bytes);
mp4->bytes += bytes + 4;
}
else
{
mp4->errcode = -1;
}
}
int h265_annexbtomp4(struct mpeg4_hevc_t* hevc, const void* data, size_t bytes, void* out, size_t size, int *vcl, int* update)
{
struct h265_annexbtomp4_handle_t h;
memset(&h, 0, sizeof(h));
h.hevc = hevc;
h.vcl = vcl;
h.update = update;
h.out = (uint8_t*)out;
h.capacity = size;
if (vcl) *vcl = 0;
if (update) *update = 0;
// hevc->numTemporalLayers = 0;
// hevc->temporalIdNested = 0;
// hevc->min_spatial_segmentation_idc = 0;
// hevc->general_profile_compatibility_flags = 0xffffffff;
// hevc->general_constraint_indicator_flags = 0xffffffffffULL;
// hevc->chromaFormat = 1; // 4:2:0
mpeg4_h264_annexb_nalu((const uint8_t*)data, bytes, hevc_handler, &h);
hevc->configurationVersion = 1;
hevc->lengthSizeMinusOne = 3; // 4 bytes
return 0 == h.errcode ? (int)h.bytes : 0;
}
int h265_is_new_access_unit(const uint8_t* nalu, size_t bytes)
{
enum { NAL_VPS = 32, NAL_SPS = 33, NAL_PPS = 34, NAL_AUD = 35, NAL_PREFIX_SEI = 39, };
uint8_t nal_type;
uint8_t nuh_layer_id;
if(bytes < 3)
return 0;
nal_type = (nalu[0] >> 1) & 0x3f;
nuh_layer_id = ((nalu[0] & 0x01) << 5) | ((nalu[1] >> 3) &0x1F);
// 7.4.2.4.4 Order of NAL units and coded pictures and their association to access units
if(NAL_VPS == nal_type || NAL_SPS == nal_type || NAL_PPS == nal_type ||
(nuh_layer_id == 0 && (NAL_AUD == nal_type || NAL_PREFIX_SEI == nal_type || (41 <= nal_type && nal_type <= 44) || (48 <= nal_type && nal_type <= 55))))
return 1;
// 7.4.2.4.5 Order of VCL NAL units and association to coded pictures
if (nal_type <= 31)
{
//first_slice_segment_in_pic_flag 0x80
return (nalu[2] & 0x80) ? 1 : 0;
}
return 0;
}
#if defined(_DEBUG) || defined(DEBUG)
void hevc_annexbtomp4_test(void)
{
const uint8_t vps[] = { 0x40, 0x01, 0x0c, 0x01, 0xff, 0xff, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0x9d, 0xc0, 0x90 };
const uint8_t sps[] = { 0x42, 0x01, 0x01, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0xa0, 0x03, 0xc0, 0x80, 0x32, 0x16, 0x59, 0xde, 0x49, 0x1b, 0x6b, 0x80, 0x40, 0x00, 0x00, 0xfa, 0x00, 0x00, 0x17, 0x70, 0x02 };
const uint8_t pps[] = { 0x44, 0x01, 0xc1, 0x73, 0xd1, 0x89 };
const uint8_t annexb[] = { 0x00, 0x00, 0x00, 0x01, 0x4e, 0x01, 0x06, 0x01, 0xd0, 0x80, 0x00, 0x00, 0x00, 0x01, 0x40, 0x01, 0x0c, 0x01, 0xff, 0xff, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0x9d, 0xc0, 0x90, 0x00, 0x00, 0x00, 0x01, 0x42, 0x01, 0x01, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0xa0, 0x03, 0xc0, 0x80, 0x32, 0x16, 0x59, 0xde, 0x49, 0x1b, 0x6b, 0x80, 0x40, 0x00, 0x00, 0xfa, 0x00, 0x00, 0x17, 0x70, 0x02, 0x00, 0x00, 0x00, 0x01, 0x44, 0x01, 0xc1, 0x73, 0xd1, 0x89 };
uint8_t output[512];
int vcl, update;
struct mpeg4_hevc_t hevc;
memset(&hevc, 0, sizeof(hevc));
assert(h265_annexbtomp4(&hevc, annexb, sizeof(annexb), output, sizeof(output), &vcl, &update) > 0);
assert(3 == hevc.numOfArrays && vcl == 0 && update == 1);
assert(hevc.nalu[0].bytes == sizeof(vps) && 0 == memcmp(hevc.nalu[0].data, vps, sizeof(vps)));
assert(hevc.nalu[1].bytes == sizeof(sps) && 0 == memcmp(hevc.nalu[1].data, sps, sizeof(sps)));
assert(hevc.nalu[2].bytes == sizeof(pps) && 0 == memcmp(hevc.nalu[2].data, pps, sizeof(pps)));
}
#endif