#include "mpeg4-hevc.h" #include "mpeg4-avc.h" #include #include #include #define H265_NAL_BLA_W_LP 16 #define H265_NAL_RSV_IRAP 23 #define H265_NAL_VPS 32 #define H265_NAL_SPS 33 #define H265_NAL_PPS 34 #define H265_NAL_AUD 35 #define H265_NAL_SEI_PREFIX 39 #define H265_NAL_SEI_SUFFIX 40 #define MAX(x, y) ((x) > (y) ? (x) : (y)) #define BIT(ptr, off) (((ptr)[(off) / 8] >> (7 - ((off) % 8))) & 0x01) struct h265_annexbtomp4_handle_t { struct mpeg4_hevc_t* hevc; int errcode; int* update; // avc sps/pps update flags int* vcl; uint8_t* out; size_t bytes; size_t capacity; }; uint8_t mpeg4_h264_read_ue(const uint8_t* data, size_t bytes, size_t* offset); static size_t hevc_rbsp_decode(const uint8_t* nalu, size_t bytes, uint8_t* sodb, size_t len) { size_t i, j; const size_t max_sps_luma_bit_depth_offset = 256; for (j = i = 0; i < bytes && j < len && i < max_sps_luma_bit_depth_offset; i++) { if (i + 2 < bytes && 0 == nalu[i] && 0 == nalu[i + 1] && 0x03 == nalu[i + 2]) { sodb[j++] = nalu[i]; sodb[j++] = nalu[i + 1]; i += 2; } else { sodb[j++] = nalu[i]; } } return j; } static int hevc_profile_tier_level(const uint8_t* nalu, size_t bytes, uint8_t maxNumSubLayersMinus1, struct mpeg4_hevc_t* hevc) { size_t n; uint8_t i; uint8_t sub_layer_profile_present_flag[8]; uint8_t sub_layer_level_present_flag[8]; if (bytes < 12) return -1; hevc->general_profile_space = (nalu[0] >> 6) & 0x03; hevc->general_tier_flag = (nalu[0] >> 5) & 0x01; hevc->general_profile_idc = nalu[0] & 0x1f; hevc->general_profile_compatibility_flags = 0; hevc->general_profile_compatibility_flags |= nalu[1] << 24; hevc->general_profile_compatibility_flags |= nalu[2] << 16; hevc->general_profile_compatibility_flags |= nalu[3] << 8; hevc->general_profile_compatibility_flags |= nalu[4]; hevc->general_constraint_indicator_flags = 0; hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[5]) << 40; hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[6]) << 32; hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[7]) << 24; hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[8]) << 16; hevc->general_constraint_indicator_flags |= ((uint64_t)nalu[9]) << 8; hevc->general_constraint_indicator_flags |= nalu[10]; hevc->general_level_idc = nalu[11]; if (maxNumSubLayersMinus1 < 1) return 12; if (bytes < 14) return -1; // error for (i = 0; i < maxNumSubLayersMinus1; i++) { sub_layer_profile_present_flag[i] = BIT(nalu, 12 * 8 + i * 2); sub_layer_level_present_flag[i] = BIT(nalu, 12 * 8 + i * 2 + 1); } n = 12 + 2; for (i = 0; i < maxNumSubLayersMinus1; i++) { if(sub_layer_profile_present_flag[i]) n += 11; if (sub_layer_level_present_flag[i]) n += 1; } return bytes >= n ? (int)n : -1; } static uint8_t hevc_vps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len) { size_t sodb; uint8_t vps; uint8_t vps_max_sub_layers_minus1; uint8_t vps_temporal_id_nesting_flag; sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len); if (sodb < 16 + 2) return 0xFF; vps = ptr[2] >> 4; // 2-nalu type vps_max_sub_layers_minus1 = (ptr[3] >> 1) & 0x07; vps_temporal_id_nesting_flag = ptr[3] & 0x01; hevc->numTemporalLayers = MAX(hevc->numTemporalLayers, vps_max_sub_layers_minus1 + 1); hevc->temporalIdNested = (hevc->temporalIdNested || vps_temporal_id_nesting_flag) ? 1 : 0; hevc_profile_tier_level(ptr + 6, sodb - 6, vps_max_sub_layers_minus1, hevc); return vps; } static uint8_t hevc_sps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len, uint8_t* vps) { size_t n; size_t sodb; uint8_t sps; uint8_t sps_max_sub_layers_minus1; uint8_t sps_temporal_id_nesting_flag; uint8_t conformance_window_flag; sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len); if (sodb < 12+3) return 0xFF; *vps = ptr[2] >> 4; // 2-nalu type sps_max_sub_layers_minus1 = (ptr[2] >> 1) & 0x07; sps_temporal_id_nesting_flag = ptr[2] & 0x01; n = hevc_profile_tier_level(ptr + 3, sodb - 3, sps_max_sub_layers_minus1, hevc); if (n <= 0) return 0xFF; n = (n + 3) * 8; sps = mpeg4_h264_read_ue(ptr, sodb, &n); hevc->chromaFormat = mpeg4_h264_read_ue(ptr, sodb, &n); if (3 == hevc->chromaFormat) n++; mpeg4_h264_read_ue(ptr, sodb, &n); // pic_width_in_luma_samples mpeg4_h264_read_ue(ptr, sodb, &n); // pic_height_in_luma_samples conformance_window_flag = BIT(ptr, n); n++; // conformance_window_flag if (conformance_window_flag) { mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_left_offset mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_right_offset mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_top_offset mpeg4_h264_read_ue(ptr, sodb, &n); // conf_win_bottom_offset } hevc->bitDepthLumaMinus8 = mpeg4_h264_read_ue(ptr, sodb, &n); hevc->bitDepthChromaMinus8 = mpeg4_h264_read_ue(ptr, sodb, &n); // TODO: vui_parameters //mp4->hevc->min_spatial_segmentation_idc; // min_spatial_segmentation_idc return sps; } static uint8_t hevc_pps_id(const uint8_t* rbsp, size_t bytes, struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t len, uint8_t* sps) { uint8_t pps; size_t sodb; size_t offset = 2 * 8; // 2-nalu type sodb = hevc_rbsp_decode(rbsp, bytes, ptr, len); if (sodb < 3) return 0xFF; (void)hevc; pps = mpeg4_h264_read_ue(ptr, sodb, &offset); *sps = mpeg4_h264_read_ue(ptr, sodb, &offset); return pps; } static void mpeg4_hevc_remove(struct mpeg4_hevc_t* hevc, uint8_t* ptr, size_t bytes, const uint8_t* end) { uint8_t i; assert(ptr >= hevc->data && ptr + bytes <= end && end <= hevc->data + sizeof(hevc->data)); memmove(ptr, ptr + bytes, end - ptr - bytes); for (i = 0; i < hevc->numOfArrays; i++) { if (hevc->nalu[i].data > ptr) hevc->nalu[i].data -= bytes; } } static int mpeg4_hevc_update2(struct mpeg4_hevc_t* hevc, int i, const uint8_t* nalu, size_t bytes) { if (bytes == hevc->nalu[i].bytes && 0 == memcmp(nalu, hevc->nalu[i].data, bytes)) return 0; // do nothing if (bytes > hevc->nalu[i].bytes && hevc->off + (bytes - hevc->nalu[i].bytes) > sizeof(hevc->data)) { assert(0); return -1; // too big } mpeg4_hevc_remove(hevc, hevc->nalu[i].data, hevc->nalu[i].bytes, hevc->data + hevc->off); hevc->off -= hevc->nalu[i].bytes; hevc->nalu[i].data = hevc->data + hevc->off; hevc->nalu[i].bytes = (uint16_t)bytes; memcpy(hevc->nalu[i].data, nalu, bytes); hevc->off += bytes; return 1; } static int mpeg4_hevc_add(struct mpeg4_hevc_t* hevc, uint8_t type, const uint8_t* nalu, size_t bytes) { // copy new assert(hevc->numOfArrays < sizeof(hevc->nalu) / sizeof(hevc->nalu[0])); if (hevc->numOfArrays >= sizeof(hevc->nalu) / sizeof(hevc->nalu[0]) || hevc->off + bytes > sizeof(hevc->data)) { assert(0); return -1; } hevc->nalu[hevc->numOfArrays].type = type; hevc->nalu[hevc->numOfArrays].bytes = (uint16_t)bytes; hevc->nalu[hevc->numOfArrays].array_completeness = 1; hevc->nalu[hevc->numOfArrays].data = hevc->data + hevc->off; memcpy(hevc->nalu[hevc->numOfArrays].data, nalu, bytes); hevc->off += bytes; ++hevc->numOfArrays; return 1; } static int h265_vps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes) { int i; uint8_t vpsid; if (bytes < 3) { assert(0); return -1; // invalid length } vpsid = hevc_vps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data)-hevc->off); for (i = 0; i < hevc->numOfArrays; i++) { if (H265_NAL_VPS == hevc->nalu[i].type && vpsid == hevc_vps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off)) return mpeg4_hevc_update2(hevc, i, nalu, bytes); } return mpeg4_hevc_add(hevc, H265_NAL_VPS, nalu, bytes); } static int h265_sps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes) { int i; uint8_t spsid; uint8_t vpsid, vpsid2; if (bytes < 13 + 2) { assert(0); return -1; // invalid length } spsid = hevc_sps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &vpsid); for (i = 0; i < hevc->numOfArrays; i++) { if (H265_NAL_SPS == hevc->nalu[i].type && spsid == hevc_sps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &vpsid2) && vpsid == vpsid2) return mpeg4_hevc_update2(hevc, i, nalu, bytes); } return mpeg4_hevc_add(hevc, H265_NAL_SPS, nalu, bytes); } static int h265_pps_copy(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes) { int i; uint8_t ppsid; uint8_t spsid, spsid2; if (bytes < 1 + 2) { assert(0); return -1; // invalid length } ppsid = hevc_pps_id(nalu, bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &spsid); for (i = 0; i < hevc->numOfArrays; i++) { if (H265_NAL_PPS == hevc->nalu[i].type && ppsid == hevc_pps_id(hevc->nalu[i].data, hevc->nalu[i].bytes, hevc, hevc->data + hevc->off, sizeof(hevc->data) - hevc->off, &spsid2) && spsid == spsid2) return mpeg4_hevc_update2(hevc, i, nalu, bytes); } return mpeg4_hevc_add(hevc, H265_NAL_PPS, nalu, bytes); } static int h265_sei_clear(struct mpeg4_hevc_t* hevc) { int i; for (i = 0; i < hevc->numOfArrays; i++) { if (H265_NAL_SEI_PREFIX == hevc->nalu[i].type || H265_NAL_SEI_SUFFIX == hevc->nalu[i].type) { mpeg4_hevc_remove(hevc, hevc->nalu[i].data, hevc->nalu[i].bytes, hevc->data + hevc->off); hevc->off -= hevc->nalu[i].bytes; if(i + 1 < hevc->numOfArrays) memmove(hevc->nalu + i, hevc->nalu + i + 1, sizeof(hevc->nalu[0]) * (hevc->numOfArrays - i - 1)); --hevc->numOfArrays; --i; } } return 0; } int mpeg4_hevc_update(struct mpeg4_hevc_t* hevc, const uint8_t* nalu, size_t bytes) { int r; switch ((nalu[0] >> 1) & 0x3f) { case H265_NAL_VPS: h265_sei_clear(hevc); // remove all prefix/suffix sei r = h265_vps_copy(hevc, nalu, bytes); break; case H265_NAL_SPS: r = h265_sps_copy(hevc, nalu, bytes); break; case H265_NAL_PPS: r = h265_pps_copy(hevc, nalu, bytes); break; #if defined(H265_FILTER_SEI) case H265_NAL_SEI_PREFIX: r = mpeg4_hevc_add(hevc, H265_NAL_SEI_PREFIX, nalu, bytes); break; case H265_NAL_SEI_SUFFIX: r = mpeg4_hevc_add(hevc, H265_NAL_SEI_SUFFIX, nalu, bytes); break; #endif default: r = 0; break; } return r; } static void hevc_handler(void* param, const uint8_t* nalu, size_t bytes) { int r; uint8_t nalutype; struct h265_annexbtomp4_handle_t* mp4; mp4 = (struct h265_annexbtomp4_handle_t*)param; if (bytes < 2) { assert(0); return; } nalutype = (nalu[0] >> 1) & 0x3f; #if defined(H2645_FILTER_AUD) if(H265_NAL_AUD == nalutype) return; // ignore AUD #endif r = mpeg4_hevc_update(mp4->hevc, nalu, bytes); if (1 == r && mp4->update) *mp4->update = 1; else if (r < 0) mp4->errcode = r; // IRAP-1, B/P-2, other-0 if (mp4->vcl && nalutype < H265_NAL_VPS) *mp4->vcl = H265_NAL_BLA_W_LP<=nalutype && nalutype<=H265_NAL_RSV_IRAP ? 1 : 2; if (mp4->capacity >= mp4->bytes + bytes + 4) { mp4->out[mp4->bytes + 0] = (uint8_t)((bytes >> 24) & 0xFF); mp4->out[mp4->bytes + 1] = (uint8_t)((bytes >> 16) & 0xFF); mp4->out[mp4->bytes + 2] = (uint8_t)((bytes >> 8) & 0xFF); mp4->out[mp4->bytes + 3] = (uint8_t)((bytes >> 0) & 0xFF); memmove(mp4->out + mp4->bytes + 4, nalu, bytes); mp4->bytes += bytes + 4; } else { mp4->errcode = -1; } } int h265_annexbtomp4(struct mpeg4_hevc_t* hevc, const void* data, size_t bytes, void* out, size_t size, int *vcl, int* update) { struct h265_annexbtomp4_handle_t h; memset(&h, 0, sizeof(h)); h.hevc = hevc; h.vcl = vcl; h.update = update; h.out = (uint8_t*)out; h.capacity = size; if (vcl) *vcl = 0; if (update) *update = 0; // hevc->numTemporalLayers = 0; // hevc->temporalIdNested = 0; // hevc->min_spatial_segmentation_idc = 0; // hevc->general_profile_compatibility_flags = 0xffffffff; // hevc->general_constraint_indicator_flags = 0xffffffffffULL; // hevc->chromaFormat = 1; // 4:2:0 mpeg4_h264_annexb_nalu((const uint8_t*)data, bytes, hevc_handler, &h); hevc->configurationVersion = 1; hevc->lengthSizeMinusOne = 3; // 4 bytes return 0 == h.errcode ? (int)h.bytes : 0; } int h265_is_new_access_unit(const uint8_t* nalu, size_t bytes) { enum { NAL_VPS = 32, NAL_SPS = 33, NAL_PPS = 34, NAL_AUD = 35, NAL_PREFIX_SEI = 39, }; uint8_t nal_type; uint8_t nuh_layer_id; if(bytes < 3) return 0; nal_type = (nalu[0] >> 1) & 0x3f; nuh_layer_id = ((nalu[0] & 0x01) << 5) | ((nalu[1] >> 3) &0x1F); // 7.4.2.4.4 Order of NAL units and coded pictures and their association to access units if(NAL_VPS == nal_type || NAL_SPS == nal_type || NAL_PPS == nal_type || (nuh_layer_id == 0 && (NAL_AUD == nal_type || NAL_PREFIX_SEI == nal_type || (41 <= nal_type && nal_type <= 44) || (48 <= nal_type && nal_type <= 55)))) return 1; // 7.4.2.4.5 Order of VCL NAL units and association to coded pictures if (nal_type <= 31) { //first_slice_segment_in_pic_flag 0x80 return (nalu[2] & 0x80) ? 1 : 0; } return 0; } #if defined(_DEBUG) || defined(DEBUG) void hevc_annexbtomp4_test(void) { const uint8_t vps[] = { 0x40, 0x01, 0x0c, 0x01, 0xff, 0xff, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0x9d, 0xc0, 0x90 }; const uint8_t sps[] = { 0x42, 0x01, 0x01, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0xa0, 0x03, 0xc0, 0x80, 0x32, 0x16, 0x59, 0xde, 0x49, 0x1b, 0x6b, 0x80, 0x40, 0x00, 0x00, 0xfa, 0x00, 0x00, 0x17, 0x70, 0x02 }; const uint8_t pps[] = { 0x44, 0x01, 0xc1, 0x73, 0xd1, 0x89 }; const uint8_t annexb[] = { 0x00, 0x00, 0x00, 0x01, 0x4e, 0x01, 0x06, 0x01, 0xd0, 0x80, 0x00, 0x00, 0x00, 0x01, 0x40, 0x01, 0x0c, 0x01, 0xff, 0xff, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0x9d, 0xc0, 0x90, 0x00, 0x00, 0x00, 0x01, 0x42, 0x01, 0x01, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x80, 0x00, 0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x78, 0xa0, 0x03, 0xc0, 0x80, 0x32, 0x16, 0x59, 0xde, 0x49, 0x1b, 0x6b, 0x80, 0x40, 0x00, 0x00, 0xfa, 0x00, 0x00, 0x17, 0x70, 0x02, 0x00, 0x00, 0x00, 0x01, 0x44, 0x01, 0xc1, 0x73, 0xd1, 0x89 }; uint8_t output[512]; int vcl, update; struct mpeg4_hevc_t hevc; memset(&hevc, 0, sizeof(hevc)); assert(h265_annexbtomp4(&hevc, annexb, sizeof(annexb), output, sizeof(output), &vcl, &update) > 0); assert(3 == hevc.numOfArrays && vcl == 0 && update == 1); assert(hevc.nalu[0].bytes == sizeof(vps) && 0 == memcmp(hevc.nalu[0].data, vps, sizeof(vps))); assert(hevc.nalu[1].bytes == sizeof(sps) && 0 == memcmp(hevc.nalu[1].data, sps, sizeof(sps))); assert(hevc.nalu[2].bytes == sizeof(pps) && 0 == memcmp(hevc.nalu[2].data, pps, sizeof(pps))); } #endif