PassengerStatistics/3rdparty/libopencv/include/opencv2/dnn/dnn.hpp

795 lines
39 KiB
C++
Raw Normal View History

2024-03-13 18:01:36 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_HPP
#define OPENCV_DNN_DNN_HPP
#include <vector>
#include <opencv2/core.hpp>
#if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v4 {
#define CV__DNN_EXPERIMENTAL_NS_END }
namespace cv { namespace dnn { namespace experimental_dnn_v4 { } using namespace experimental_dnn_v4; }}
#else
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
#define CV__DNN_EXPERIMENTAL_NS_END
#endif
#include <opencv2/dnn/dict.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
//! @addtogroup dnn
//! @{
typedef std::vector<int> MatShape;
/**
* @brief Enum of computation backends supported by layers.
*/
enum Backend
{
DNN_BACKEND_DEFAULT,
DNN_BACKEND_HALIDE,
DNN_BACKEND_INFERENCE_ENGINE
};
/**
* @brief Enum of target devices for computations.
*/
enum Target
{
DNN_TARGET_CPU,
DNN_TARGET_OPENCL
};
/** @brief This class provides all data needed to initialize layer.
*
* It includes dictionary with scalar params (which can be readed by using Dict interface),
* blob params #blobs and optional meta information: #name and #type of layer instance.
*/
class CV_EXPORTS LayerParams : public Dict
{
public:
//TODO: Add ability to name blob params
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
String name; //!< Name of the layer instance (optional, can be used internal purposes).
String type; //!< Type name which was used for creating layer by layer factory (optional).
};
/**
* @brief Derivatives of this class encapsulates functions of certain backends.
*/
class BackendNode
{
public:
BackendNode(int backendId);
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
int backendId; //!< Backend identifier.
};
/**
* @brief Derivatives of this class wraps cv::Mat for different backends and targets.
*/
class BackendWrapper
{
public:
BackendWrapper(int backendId, int targetId);
/**
* @brief Wrap cv::Mat for specific backend and target.
* @param[in] targetId Target identifier.
* @param[in] m cv::Mat for wrapping.
*
* Make CPU->GPU data transfer if it's require for the target.
*/
BackendWrapper(int targetId, const cv::Mat& m);
/**
* @brief Make wrapper for reused cv::Mat.
* @param[in] base Wrapper of cv::Mat that will be reused.
* @param[in] shape Specific shape.
*
* Initialize wrapper from another one. It'll wrap the same host CPU
* memory and mustn't allocate memory on device(i.e. GPU). It might
* has different shape. Use in case of CPU memory reusing for reuse
* associented memory on device too.
*/
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
/**
* @brief Transfer data to CPU host memory.
*/
virtual void copyToHost() = 0;
/**
* @brief Indicate that an actual data is on CPU.
*/
virtual void setHostDirty() = 0;
int backendId; //!< Backend identifier.
int targetId; //!< Target identifier.
};
class CV_EXPORTS ActivationLayer;
class CV_EXPORTS BatchNormLayer;
class CV_EXPORTS ScaleLayer;
/** @brief This interface class allows to build new Layers - are building blocks of networks.
*
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
*/
class CV_EXPORTS_W Layer : public Algorithm
{
public:
//! List of learned parameters must be stored here to allow read them by using Net::getParam().
CV_PROP_RW std::vector<Mat> blobs;
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
* @param[in] input vector of already allocated input blobs
* @param[out] output vector of already allocated output blobs
*
* If this method is called after network has allocated all memory for input and output blobs
* and before inferencing.
*/
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] input the input blobs.
* @param[out] output allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals) = 0;
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) = 0;
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
/** @brief @overload */
CV_WRAP void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
/** @brief @overload */
CV_WRAP std::vector<Mat> finalize(const std::vector<Mat> &inputs);
/** @brief Allocates layer and computes output. */
CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
CV_IN_OUT std::vector<Mat> &internals);
/** @brief Returns index of input blob into the input array.
* @param inputName label of input blob
*
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
* This method maps label of input blob to its index into input vector.
*/
virtual int inputNameToIndex(String inputName);
/** @brief Returns index of output blob in output array.
* @see inputNameToIndex()
*/
virtual int outputNameToIndex(String outputName);
/**
* @brief Ask layer if it support specific backend for doing computations.
* @param[in] backendId computation backend identifier.
* @see Backend
*/
virtual bool supportBackend(int backendId);
/**
* @brief Returns Halide backend node.
* @param[in] inputs Input Halide buffers.
* @see BackendNode, BackendWrapper
*
* Input buffers should be exactly the same that will be used in forward invocations.
* Despite we can use Halide::ImageParam based on input shape only,
* it helps prevent some memory management issues (if something wrong,
* Halide tests will be failed).
*/
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs);
/**
* @brief Automatic Halide scheduling based on layer hyper-parameters.
* @param[in] node Backend node with Halide functions.
* @param[in] inputs Blobs that will be used in forward invocations.
* @param[in] outputs Blobs that will be used in forward invocations.
* @param[in] targetId Target identifier
* @see BackendNode, Target
*
* Layer don't use own Halide::Func members because we can have applied
* layers fusing. In this way the fused function should be scheduled.
*/
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const;
/**
* @brief Implement layers fusing.
* @param[in] node Backend node of bottom layer.
* @see BackendNode
*
* Actual for graph-based backends. If layer attached successfully,
* returns non-empty cv::Ptr to node of the same backend.
* Fuse only over the last function.
*/
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
/**
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent activation layer.
*
* Returns true if the activation layer has been attached successfully.
*/
virtual bool setActivation(const Ptr<ActivationLayer>& layer);
/**
* @brief Try to fuse current layer with a next one
* @param[in] top Next layer to be fused.
* @returns True if fusion was performed.
*/
virtual bool tryFuse(Ptr<Layer>& top);
/**
* @brief Returns parameters of layers with channel-wise multiplication and addition.
* @param[out] scale Channel-wise multipliers. Total number of values should
* be equal to number of channels.
* @param[out] shift Channel-wise offsets. Total number of values should
* be equal to number of channels.
*
* Some layers can fuse their transformations with further layers.
* In example, convolution + batch normalization. This way base layer
* use weights from layer after it. Fused layer is skipped.
* By default, @p scale and @p shift are empty that means layer has no
* element-wise multiplications or additions.
*/
virtual void getScaleShift(Mat& scale, Mat& shift) const;
/**
* @brief "Deattaches" all the layers, attached to particular layer.
*/
virtual void unsetAttached();
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const;
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;}
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
CV_PROP int preferableTarget; //!< prefer target for layer forwarding
Layer();
explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
void setParamsFrom(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
virtual ~Layer();
};
/** @brief This class allows to create and manipulate comprehensive artificial neural networks.
*
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
* and edges specify relationships between layers inputs and outputs.
*
* Each network layer has unique integer id and unique string name inside its network.
* LayerId can store either layer name or layer id.
*
* This class supports reference counting of its instances, i. e. copies point to the same instance.
*/
class CV_EXPORTS_W_SIMPLE Net
{
public:
CV_WRAP Net(); //!< Default constructor.
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
/** Returns true if there are no layers in the network. */
CV_WRAP bool empty() const;
/** @brief Adds new layer to the net.
* @param name unique name of the adding layer.
* @param type typename of the adding layer (type must be registered in LayerRegister).
* @param params parameters which will be used to initialize the creating layer.
* @returns unique identifier of created layer, or -1 if a failure will happen.
*/
int addLayer(const String &name, const String &type, LayerParams &params);
/** @brief Adds new layer and connects its first input to the first output of previously added layer.
* @see addLayer()
*/
int addLayerToPrev(const String &name, const String &type, LayerParams &params);
/** @brief Converts string name of the layer to the integer identifier.
* @returns id of the layer, or -1 if the layer wasn't found.
*/
CV_WRAP int getLayerId(const String &layer);
CV_WRAP std::vector<String> getLayerNames() const;
/** @brief Container for strings and integers. */
typedef DictValue LayerId;
/** @brief Returns pointer to layer with specified id or name which the network use. */
CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
/** @brief Returns pointers to input layers of specific layer. */
std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP
/** @brief Delete layer for the network (not implemented yet) */
CV_WRAP void deleteLayer(LayerId layer);
/** @brief Connects output of the first layer to input of the second layer.
* @param outPin descriptor of the first layer output.
* @param inpPin descriptor of the second layer input.
*
* Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
* If this part is empty then the network input pseudo layer will be used;
* - the second optional part of the template <DFN>input_number</DFN>
* is either number of the layer input, either label one.
* If this part is omitted then the first layer input will be used.
*
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
*/
CV_WRAP void connect(String outPin, String inpPin);
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
* @param outLayerId identifier of the first layer
* @param inpLayerId identifier of the second layer
* @param outNum number of the first layer output
* @param inpNum number of the second layer input
*/
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
/** @brief Sets outputs names of the network input pseudo layer.
*
* Each net always has special own the network input pseudo layer with id=0.
* This layer stores the user blobs only and don't make any computations.
* In fact, this layer provides the only way to pass user data into the network.
* As any other layer, this layer can label its outputs and this function provides an easy way to do this.
*/
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @return blob for first output of specified layer.
* @details By default runs forward pass for the whole network.
*/
CV_WRAP Mat forward(const String& outputName = String());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputBlobs contains all output blobs for specified layer.
* @param outputName name for layer which output is needed to get
* @details If @p outputName is empty, runs forward pass for the whole network.
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains blobs for first outputs of specified layers.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames);
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames);
/**
* @brief Compile Halide layers.
* @param[in] scheduler Path to YAML file with scheduling directives.
* @see setPreferableBackend
*
* Schedule layers that support Halide backend. Then compile them for
* specific target. For layers that not represented in scheduling file
* or if no manual scheduling used at all, automatic scheduling will be applied.
*/
CV_WRAP void setHalideScheduler(const String& scheduler);
/**
* @brief Ask network to use specific computation backend where it supported.
* @param[in] backendId backend identifier.
* @see Backend
*/
CV_WRAP void setPreferableBackend(int backendId);
/**
* @brief Ask network to make computations on specific target device.
* @param[in] targetId target identifier.
* @see Target
*/
CV_WRAP void setPreferableTarget(int targetId);
/** @brief Sets the new value for the layer output blob
* @param name descriptor of the updating layer output blob.
* @param blob new blob.
* @see connect(String, String) to know format of the descriptor.
* @note If updating blob is not empty then @p blob must have the same shape,
* because network reshaping is not implemented yet.
*/
CV_WRAP void setInput(InputArray blob, const String& name = "");
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @param blob the new value.
* @see Layer::blobs
* @note If shape of the new blob differs from the previous shape,
* then the following forward pass may fail.
*/
CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
/** @brief Returns parameter blob of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @see Layer::blobs
*/
CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
/** @brief Returns indexes of layers with unconnected outputs.
*/
CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
/** @brief Returns input and output shapes for all layers in loaded model;
* preliminary inferencing isn't necessary.
* @param netInputShapes shapes for all input blobs in net input layer.
* @param layersIds output parameter for layer IDs.
* @param inLayersShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayersShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @overload */
CV_WRAP void getLayersShapes(const MatShape& netInputShape,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @brief Returns input and output shapes for layer with specified
* id in loaded model; preliminary inferencing isn't necessary.
* @param netInputShape shape input blob in net input layer.
* @param layerId id for layer.
* @param inLayerShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayerShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
void getLayerShapes(const MatShape& netInputShape,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @overload */
void getLayerShapes(const std::vector<MatShape>& netInputShapes,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @brief Computes FLOP for whole loaded model with specified input shapes.
* @param netInputShapes vector of shapes for all net inputs.
* @returns computed FLOP.
*/
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const MatShape& netInputShape) const;
/** @brief Returns list of types for layer used in model.
* @param layersTypes output parameter for returning types.
*/
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
/** @brief Returns count of layers of specified type.
* @param layerType type.
* @returns count of layers
*/
CV_WRAP int getLayersCount(const String& layerType) const;
/** @brief Computes bytes number which are requered to store
* all weights and intermediate blobs for model.
* @param netInputShapes vector of shapes for all net inputs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
/** @overload */
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @brief Computes bytes number which are requered to store
* all weights and intermediate blobs for each layer.
* @param netInputShapes vector of shapes for all net inputs.
* @param layerIds output vector to save layer IDs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @overload */
void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @brief Enables or disables layer fusion in the network.
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
*/
CV_WRAP void enableFusion(bool fusion);
/** @brief Returns overall time for inference and timings (in ticks) for layers.
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
* in this case zero ticks count will be return for that skipped layers.
* @param timings vector for tick timings for all layers.
* @return overall ticks for model inference.
*/
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
private:
struct Impl;
Ptr<Impl> impl;
};
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param cfgFile path to the .cfg file with text description of the network architecture.
* @param darknetModel path to the .weights file with learned network.
* @returns Network object that ready to do forward, throw an exception in failure cases.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
* @param prototxt path to the .prototxt file with text description of the network architecture.
* @param caffeModel path to the .caffemodel file with learned network.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
/** @brief Reads a network model stored in Caffe model in memory.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferProto buffer containing the content of the .prototxt file
* @param lenProto length of bufferProto
* @param bufferModel buffer containing the content of the .caffemodel file
* @param lenModel length of bufferModel
* @returns Net object.
*/
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
const char *bufferModel = NULL, size_t lenModel = 0);
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @param model path to the .pb file with binary protobuf description of the network architecture
* @param config path to the .pbtxt file that contains text graph definition in protobuf format.
* Resulting Net object is built by text graph using weights from a binary one that
* let us make it more flexible.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferModel buffer containing the content of the pb file
* @param lenModel length of bufferModel
* @param bufferConfig buffer containing the content of the pbtxt file
* @param lenConfig length of bufferConfig
*/
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
const char *bufferConfig = NULL, size_t lenConfig = 0);
/**
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
* @param model path to the file, dumped from Torch by using torch.save() function.
* @param isBinary specifies whether the network was serialized in ascii mode or binary.
* @returns Net object.
*
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
* which has various bit-length on different systems.
*
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
*
* List of supported layers (i.e. object instances derived from Torch nn.Module class):
* - nn.Sequential
* - nn.Parallel
* - nn.Concat
* - nn.Linear
* - nn.SpatialConvolution
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling
* - nn.ReLU, nn.TanH, nn.Sigmoid
* - nn.Reshape
* - nn.SoftMax, nn.LogSoftMax
*
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
*/
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true);
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
* @warning This function has the same limitations as readNetFromTorch().
*/
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
* @param image input image (with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p image values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from image.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
const Size& size = Size(), const Scalar& mean = Scalar(),
bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
* @param images input images (all with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p images values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Creates 4-dimensional blob from series of images.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
double scalefactor=1.0, Size size = Size(),
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
/** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
* (std::vector<cv::Mat>).
* @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
* which you would like to extract the images.
* @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
* (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
* of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
*/
CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
/** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension).
* @param dst Path to destination model with updated weights.
* @param layersTypes Set of layers types which parameters will be converted.
* By default, converts only Convolutional and Fully-Connected layers'
* weights.
*
* @note Shrinked model has no origin float32 weights so it can't be used
* in origin Caffe framework anymore. However the structure of data
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
* So the resulting model may be used there.
*/
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
const std::vector<String>& layersTypes = std::vector<String>());
/** @brief Performs non maximum suppression given boxes and corresponding scores.
* @param bboxes a set of bounding boxes to apply NMS.
* @param scores a set of corresponding confidences.
* @param score_threshold a threshold used to filter boxes by score.
* @param nms_threshold a threshold used in non maximum suppression.
* @param indices the kept indices of bboxes after NMS.
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
* @param top_k if `>0`, keep at most @p top_k picked indices.
*/
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}
}
#include <opencv2/dnn/layer.hpp>
#include <opencv2/dnn/dnn.inl.hpp>
#endif /* OPENCV_DNN_DNN_HPP */