849 lines
25 KiB
C++
849 lines
25 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
|
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <cmath>
|
|
|
|
#include "general.h"
|
|
#include "nn_index.h"
|
|
#include "dist.h"
|
|
#include "matrix.h"
|
|
#include "result_set.h"
|
|
#include "heap.h"
|
|
#include "allocator.h"
|
|
#include "random.h"
|
|
#include "saving.h"
|
|
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
struct HierarchicalClusteringIndexParams : public IndexParams
|
|
{
|
|
HierarchicalClusteringIndexParams(int branching = 32,
|
|
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
|
|
int trees = 4, int leaf_size = 100)
|
|
{
|
|
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
|
|
// The branching factor used in the hierarchical clustering
|
|
(*this)["branching"] = branching;
|
|
// Algorithm used for picking the initial cluster centers
|
|
(*this)["centers_init"] = centers_init;
|
|
// number of parallel trees to build
|
|
(*this)["trees"] = trees;
|
|
// maximum leaf size
|
|
(*this)["leaf_size"] = leaf_size;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Hierarchical index
|
|
*
|
|
* Contains a tree constructed through a hierarchical clustering
|
|
* and other information for indexing a set of points for nearest-neighbour matching.
|
|
*/
|
|
template <typename Distance>
|
|
class HierarchicalClusteringIndex : public NNIndex<Distance>
|
|
{
|
|
public:
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
private:
|
|
|
|
|
|
typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
|
|
|
|
/**
|
|
* The function used for choosing the cluster centers.
|
|
*/
|
|
centersAlgFunction chooseCenters;
|
|
|
|
|
|
|
|
/**
|
|
* Chooses the initial centers in the k-means clustering in a random manner.
|
|
*
|
|
* Params:
|
|
* k = number of centers
|
|
* vecs = the dataset of points
|
|
* indices = indices in the dataset
|
|
* indices_length = length of indices vector
|
|
*
|
|
*/
|
|
void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
|
|
{
|
|
UniqueRandom r(indices_length);
|
|
|
|
int index;
|
|
for (index=0; index<k; ++index) {
|
|
bool duplicate = true;
|
|
int rnd;
|
|
while (duplicate) {
|
|
duplicate = false;
|
|
rnd = r.next();
|
|
if (rnd<0) {
|
|
centers_length = index;
|
|
return;
|
|
}
|
|
|
|
centers[index] = dsindices[rnd];
|
|
|
|
for (int j=0; j<index; ++j) {
|
|
DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
|
|
if (sq<1e-16) {
|
|
duplicate = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
centers_length = index;
|
|
}
|
|
|
|
|
|
/**
|
|
* Chooses the initial centers in the k-means using Gonzales' algorithm
|
|
* so that the centers are spaced apart from each other.
|
|
*
|
|
* Params:
|
|
* k = number of centers
|
|
* vecs = the dataset of points
|
|
* indices = indices in the dataset
|
|
* Returns:
|
|
*/
|
|
void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
|
|
{
|
|
int n = indices_length;
|
|
|
|
int rnd = rand_int(n);
|
|
assert(rnd >=0 && rnd < n);
|
|
|
|
centers[0] = dsindices[rnd];
|
|
|
|
int index;
|
|
for (index=1; index<k; ++index) {
|
|
|
|
int best_index = -1;
|
|
DistanceType best_val = 0;
|
|
for (int j=0; j<n; ++j) {
|
|
DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
|
|
for (int i=1; i<index; ++i) {
|
|
DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
|
|
if (tmp_dist<dist) {
|
|
dist = tmp_dist;
|
|
}
|
|
}
|
|
if (dist>best_val) {
|
|
best_val = dist;
|
|
best_index = j;
|
|
}
|
|
}
|
|
if (best_index!=-1) {
|
|
centers[index] = dsindices[best_index];
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
centers_length = index;
|
|
}
|
|
|
|
|
|
/**
|
|
* Chooses the initial centers in the k-means using the algorithm
|
|
* proposed in the KMeans++ paper:
|
|
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
|
|
*
|
|
* Implementation of this function was converted from the one provided in Arthur's code.
|
|
*
|
|
* Params:
|
|
* k = number of centers
|
|
* vecs = the dataset of points
|
|
* indices = indices in the dataset
|
|
* Returns:
|
|
*/
|
|
void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
|
|
{
|
|
int n = indices_length;
|
|
|
|
double currentPot = 0;
|
|
DistanceType* closestDistSq = new DistanceType[n];
|
|
|
|
// Choose one random center and set the closestDistSq values
|
|
int index = rand_int(n);
|
|
assert(index >=0 && index < n);
|
|
centers[0] = dsindices[index];
|
|
|
|
// Computing distance^2 will have the advantage of even higher probability further to pick new centers
|
|
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
|
|
for (int i = 0; i < n; i++) {
|
|
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
|
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
|
|
currentPot += closestDistSq[i];
|
|
}
|
|
|
|
|
|
const int numLocalTries = 1;
|
|
|
|
// Choose each center
|
|
int centerCount;
|
|
for (centerCount = 1; centerCount < k; centerCount++) {
|
|
|
|
// Repeat several trials
|
|
double bestNewPot = -1;
|
|
int bestNewIndex = 0;
|
|
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
|
|
|
|
// Choose our center - have to be slightly careful to return a valid answer even accounting
|
|
// for possible rounding errors
|
|
double randVal = rand_double(currentPot);
|
|
for (index = 0; index < n-1; index++) {
|
|
if (randVal <= closestDistSq[index]) break;
|
|
else randVal -= closestDistSq[index];
|
|
}
|
|
|
|
// Compute the new potential
|
|
double newPot = 0;
|
|
for (int i = 0; i < n; i++) {
|
|
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
|
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
|
}
|
|
|
|
// Store the best result
|
|
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
|
|
bestNewPot = newPot;
|
|
bestNewIndex = index;
|
|
}
|
|
}
|
|
|
|
// Add the appropriate center
|
|
centers[centerCount] = dsindices[bestNewIndex];
|
|
currentPot = bestNewPot;
|
|
for (int i = 0; i < n; i++) {
|
|
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
|
|
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
|
}
|
|
}
|
|
|
|
centers_length = centerCount;
|
|
|
|
delete[] closestDistSq;
|
|
}
|
|
|
|
|
|
/**
|
|
* Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
|
|
* select the first point of the list as a candidate, then parse the points list. If another
|
|
* point is further than current candidate from the other centers, test if it is a good center
|
|
* of a local aggregation. If it is, replace current candidate by this point. And so on...
|
|
*
|
|
* Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
|
|
* this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
|
|
* class that pick centers among existing points instead of computing the barycenters, there is a real
|
|
* improvement.
|
|
*
|
|
* Params:
|
|
* k = number of centers
|
|
* vecs = the dataset of points
|
|
* indices = indices in the dataset
|
|
* Returns:
|
|
*/
|
|
void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
|
|
{
|
|
const float kSpeedUpFactor = 1.3f;
|
|
|
|
int n = indices_length;
|
|
|
|
DistanceType* closestDistSq = new DistanceType[n];
|
|
|
|
// Choose one random center and set the closestDistSq values
|
|
int index = rand_int(n);
|
|
assert(index >=0 && index < n);
|
|
centers[0] = dsindices[index];
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
|
}
|
|
|
|
|
|
// Choose each center
|
|
int centerCount;
|
|
for (centerCount = 1; centerCount < k; centerCount++) {
|
|
|
|
// Repeat several trials
|
|
double bestNewPot = -1;
|
|
int bestNewIndex = 0;
|
|
DistanceType furthest = 0;
|
|
for (index = 0; index < n; index++) {
|
|
|
|
// We will test only the potential of the points further than current candidate
|
|
if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
|
|
|
|
// Compute the new potential
|
|
double newPot = 0;
|
|
for (int i = 0; i < n; i++) {
|
|
newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
|
|
, closestDistSq[i] );
|
|
}
|
|
|
|
// Store the best result
|
|
if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
|
|
bestNewPot = newPot;
|
|
bestNewIndex = index;
|
|
furthest = closestDistSq[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the appropriate center
|
|
centers[centerCount] = dsindices[bestNewIndex];
|
|
for (int i = 0; i < n; i++) {
|
|
closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
|
|
, closestDistSq[i] );
|
|
}
|
|
}
|
|
|
|
centers_length = centerCount;
|
|
|
|
delete[] closestDistSq;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/**
|
|
* Index constructor
|
|
*
|
|
* Params:
|
|
* inputData = dataset with the input features
|
|
* params = parameters passed to the hierarchical k-means algorithm
|
|
*/
|
|
HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
|
|
Distance d = Distance())
|
|
: dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
|
|
{
|
|
memoryCounter = 0;
|
|
|
|
size_ = dataset.rows;
|
|
veclen_ = dataset.cols;
|
|
|
|
branching_ = get_param(params,"branching",32);
|
|
centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
|
|
trees_ = get_param(params,"trees",4);
|
|
leaf_size_ = get_param(params,"leaf_size",100);
|
|
|
|
if (centers_init_==FLANN_CENTERS_RANDOM) {
|
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
|
|
}
|
|
else if (centers_init_==FLANN_CENTERS_GONZALES) {
|
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
|
|
}
|
|
else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
|
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
|
|
}
|
|
else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
|
|
chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
|
|
}
|
|
else {
|
|
throw FLANNException("Unknown algorithm for choosing initial centers.");
|
|
}
|
|
|
|
trees_ = get_param(params,"trees",4);
|
|
root = new NodePtr[trees_];
|
|
indices = new int*[trees_];
|
|
|
|
for (int i=0; i<trees_; ++i) {
|
|
root[i] = NULL;
|
|
indices[i] = NULL;
|
|
}
|
|
}
|
|
|
|
HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
|
|
HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
|
|
|
|
/**
|
|
* Index destructor.
|
|
*
|
|
* Release the memory used by the index.
|
|
*/
|
|
virtual ~HierarchicalClusteringIndex()
|
|
{
|
|
free_elements();
|
|
|
|
if (root!=NULL) {
|
|
delete[] root;
|
|
}
|
|
|
|
if (indices!=NULL) {
|
|
delete[] indices;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Release the inner elements of indices[]
|
|
*/
|
|
void free_elements()
|
|
{
|
|
if (indices!=NULL) {
|
|
for(int i=0; i<trees_; ++i) {
|
|
if (indices[i]!=NULL) {
|
|
delete[] indices[i];
|
|
indices[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns size of index.
|
|
*/
|
|
size_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
/**
|
|
* Returns the length of an index feature.
|
|
*/
|
|
size_t veclen() const
|
|
{
|
|
return veclen_;
|
|
}
|
|
|
|
|
|
/**
|
|
* Computes the inde memory usage
|
|
* Returns: memory used by the index
|
|
*/
|
|
int usedMemory() const
|
|
{
|
|
return pool.usedMemory+pool.wastedMemory+memoryCounter;
|
|
}
|
|
|
|
/**
|
|
* Builds the index
|
|
*/
|
|
void buildIndex()
|
|
{
|
|
if (branching_<2) {
|
|
throw FLANNException("Branching factor must be at least 2");
|
|
}
|
|
|
|
free_elements();
|
|
|
|
for (int i=0; i<trees_; ++i) {
|
|
indices[i] = new int[size_];
|
|
for (size_t j=0; j<size_; ++j) {
|
|
indices[i][j] = (int)j;
|
|
}
|
|
root[i] = pool.allocate<Node>();
|
|
computeClustering(root[i], indices[i], (int)size_, branching_,0);
|
|
}
|
|
}
|
|
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_HIERARCHICAL;
|
|
}
|
|
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
save_value(stream, branching_);
|
|
save_value(stream, trees_);
|
|
save_value(stream, centers_init_);
|
|
save_value(stream, leaf_size_);
|
|
save_value(stream, memoryCounter);
|
|
for (int i=0; i<trees_; ++i) {
|
|
save_value(stream, *indices[i], size_);
|
|
save_tree(stream, root[i], i);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
free_elements();
|
|
|
|
if (root!=NULL) {
|
|
delete[] root;
|
|
}
|
|
|
|
if (indices!=NULL) {
|
|
delete[] indices;
|
|
}
|
|
|
|
load_value(stream, branching_);
|
|
load_value(stream, trees_);
|
|
load_value(stream, centers_init_);
|
|
load_value(stream, leaf_size_);
|
|
load_value(stream, memoryCounter);
|
|
|
|
indices = new int*[trees_];
|
|
root = new NodePtr[trees_];
|
|
for (int i=0; i<trees_; ++i) {
|
|
indices[i] = new int[size_];
|
|
load_value(stream, *indices[i], size_);
|
|
load_tree(stream, root[i], i);
|
|
}
|
|
|
|
params["algorithm"] = getType();
|
|
params["branching"] = branching_;
|
|
params["trees"] = trees_;
|
|
params["centers_init"] = centers_init_;
|
|
params["leaf_size"] = leaf_size_;
|
|
}
|
|
|
|
|
|
/**
|
|
* Find set of nearest neighbors to vec. Their indices are stored inside
|
|
* the result object.
|
|
*
|
|
* Params:
|
|
* result = the result object in which the indices of the nearest-neighbors are stored
|
|
* vec = the vector for which to search the nearest neighbors
|
|
* searchParams = parameters that influence the search algorithm (checks)
|
|
*/
|
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
|
{
|
|
|
|
int maxChecks = get_param(searchParams,"checks",32);
|
|
|
|
// Priority queue storing intermediate branches in the best-bin-first search
|
|
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
|
|
|
|
std::vector<bool> checked(size_,false);
|
|
int checks = 0;
|
|
for (int i=0; i<trees_; ++i) {
|
|
findNN(root[i], result, vec, checks, maxChecks, heap, checked);
|
|
}
|
|
|
|
BranchSt branch;
|
|
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
|
|
NodePtr node = branch.node;
|
|
findNN(node, result, vec, checks, maxChecks, heap, checked);
|
|
}
|
|
assert(result.full());
|
|
|
|
delete heap;
|
|
|
|
}
|
|
|
|
IndexParams getParameters() const
|
|
{
|
|
return params;
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/**
|
|
* Struture representing a node in the hierarchical k-means tree.
|
|
*/
|
|
struct Node
|
|
{
|
|
/**
|
|
* The cluster center index
|
|
*/
|
|
int pivot;
|
|
/**
|
|
* The cluster size (number of points in the cluster)
|
|
*/
|
|
int size;
|
|
/**
|
|
* Child nodes (only for non-terminal nodes)
|
|
*/
|
|
Node** childs;
|
|
/**
|
|
* Node points (only for terminal nodes)
|
|
*/
|
|
int* indices;
|
|
/**
|
|
* Level
|
|
*/
|
|
int level;
|
|
};
|
|
typedef Node* NodePtr;
|
|
|
|
|
|
|
|
/**
|
|
* Alias definition for a nicer syntax.
|
|
*/
|
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
|
|
|
|
|
|
|
void save_tree(FILE* stream, NodePtr node, int num)
|
|
{
|
|
save_value(stream, *node);
|
|
if (node->childs==NULL) {
|
|
int indices_offset = (int)(node->indices - indices[num]);
|
|
save_value(stream, indices_offset);
|
|
}
|
|
else {
|
|
for(int i=0; i<branching_; ++i) {
|
|
save_tree(stream, node->childs[i], num);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void load_tree(FILE* stream, NodePtr& node, int num)
|
|
{
|
|
node = pool.allocate<Node>();
|
|
load_value(stream, *node);
|
|
if (node->childs==NULL) {
|
|
int indices_offset;
|
|
load_value(stream, indices_offset);
|
|
node->indices = indices[num] + indices_offset;
|
|
}
|
|
else {
|
|
node->childs = pool.allocate<NodePtr>(branching_);
|
|
for(int i=0; i<branching_; ++i) {
|
|
load_tree(stream, node->childs[i], num);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
|
|
{
|
|
cost = 0;
|
|
for (int i=0; i<indices_length; ++i) {
|
|
ElementType* point = dataset[dsindices[i]];
|
|
DistanceType dist = distance(point, dataset[centers[0]], veclen_);
|
|
labels[i] = 0;
|
|
for (int j=1; j<centers_length; ++j) {
|
|
DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
|
|
if (dist>new_dist) {
|
|
labels[i] = j;
|
|
dist = new_dist;
|
|
}
|
|
}
|
|
cost += dist;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The method responsible with actually doing the recursive hierarchical
|
|
* clustering
|
|
*
|
|
* Params:
|
|
* node = the node to cluster
|
|
* indices = indices of the points belonging to the current node
|
|
* branching = the branching factor to use in the clustering
|
|
*
|
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
|
|
*/
|
|
void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
|
|
{
|
|
node->size = indices_length;
|
|
node->level = level;
|
|
|
|
if (indices_length < leaf_size_) { // leaf node
|
|
node->indices = dsindices;
|
|
std::sort(node->indices,node->indices+indices_length);
|
|
node->childs = NULL;
|
|
return;
|
|
}
|
|
|
|
std::vector<int> centers(branching);
|
|
std::vector<int> labels(indices_length);
|
|
|
|
int centers_length;
|
|
(this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length);
|
|
|
|
if (centers_length<branching) {
|
|
node->indices = dsindices;
|
|
std::sort(node->indices,node->indices+indices_length);
|
|
node->childs = NULL;
|
|
return;
|
|
}
|
|
|
|
|
|
// assign points to clusters
|
|
DistanceType cost;
|
|
computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
|
|
|
|
node->childs = pool.allocate<NodePtr>(branching);
|
|
int start = 0;
|
|
int end = start;
|
|
for (int i=0; i<branching; ++i) {
|
|
for (int j=0; j<indices_length; ++j) {
|
|
if (labels[j]==i) {
|
|
std::swap(dsindices[j],dsindices[end]);
|
|
std::swap(labels[j],labels[end]);
|
|
end++;
|
|
}
|
|
}
|
|
|
|
node->childs[i] = pool.allocate<Node>();
|
|
node->childs[i]->pivot = centers[i];
|
|
node->childs[i]->indices = NULL;
|
|
computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
|
|
start=end;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Performs one descent in the hierarchical k-means tree. The branches not
|
|
* visited are stored in a priority queue.
|
|
*
|
|
* Params:
|
|
* node = node to explore
|
|
* result = container for the k-nearest neighbors found
|
|
* vec = query points
|
|
* checks = how many points in the dataset have been checked so far
|
|
* maxChecks = maximum dataset points to checks
|
|
*/
|
|
|
|
|
|
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
|
|
Heap<BranchSt>* heap, std::vector<bool>& checked)
|
|
{
|
|
if (node->childs==NULL) {
|
|
if (checks>=maxChecks) {
|
|
if (result.full()) return;
|
|
}
|
|
for (int i=0; i<node->size; ++i) {
|
|
int index = node->indices[i];
|
|
if (!checked[index]) {
|
|
DistanceType dist = distance(dataset[index], vec, veclen_);
|
|
result.addPoint(dist, index);
|
|
checked[index] = true;
|
|
++checks;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
DistanceType* domain_distances = new DistanceType[branching_];
|
|
int best_index = 0;
|
|
domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
|
|
for (int i=1; i<branching_; ++i) {
|
|
domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
|
|
if (domain_distances[i]<domain_distances[best_index]) {
|
|
best_index = i;
|
|
}
|
|
}
|
|
for (int i=0; i<branching_; ++i) {
|
|
if (i!=best_index) {
|
|
heap->insert(BranchSt(node->childs[i],domain_distances[i]));
|
|
}
|
|
}
|
|
delete[] domain_distances;
|
|
findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
|
|
/**
|
|
* The dataset used by this index
|
|
*/
|
|
const Matrix<ElementType> dataset;
|
|
|
|
/**
|
|
* Parameters used by this index
|
|
*/
|
|
IndexParams params;
|
|
|
|
|
|
/**
|
|
* Number of features in the dataset.
|
|
*/
|
|
size_t size_;
|
|
|
|
/**
|
|
* Length of each feature.
|
|
*/
|
|
size_t veclen_;
|
|
|
|
/**
|
|
* The root node in the tree.
|
|
*/
|
|
NodePtr* root;
|
|
|
|
/**
|
|
* Array of indices to vectors in the dataset.
|
|
*/
|
|
int** indices;
|
|
|
|
|
|
/**
|
|
* The distance
|
|
*/
|
|
Distance distance;
|
|
|
|
/**
|
|
* Pooled memory allocator.
|
|
*
|
|
* Using a pooled memory allocator is more efficient
|
|
* than allocating memory directly when there is a large
|
|
* number small of memory allocations.
|
|
*/
|
|
PooledAllocator pool;
|
|
|
|
/**
|
|
* Memory occupied by the index.
|
|
*/
|
|
int memoryCounter;
|
|
|
|
/** index parameters */
|
|
int branching_;
|
|
int trees_;
|
|
flann_centers_init_t centers_init_;
|
|
int leaf_size_;
|
|
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
|