ZLMediaKit/webrtc/Nack.cpp

337 lines
10 KiB
C++
Raw Permalink Normal View History

2021-06-25 15:43:47 +08:00
/*
2023-12-09 16:23:51 +08:00
* Copyright (c) 2016-present The ZLMediaKit project authors. All Rights Reserved.
2021-06-25 15:43:47 +08:00
*
* This file is part of ZLMediaKit(https://github.com/ZLMediaKit/ZLMediaKit).
*
2023-12-09 16:23:51 +08:00
* Use of this source code is governed by MIT-like license that can be found in the
2021-06-25 15:43:47 +08:00
* LICENSE file in the root of the source tree. All contributing project authors
* may be found in the AUTHORS file in the root of the source tree.
*/
#include "Nack.h"
#include "Common/config.h"
2021-06-25 15:43:47 +08:00
using namespace std;
using namespace toolkit;
2022-09-18 21:03:05 +08:00
namespace mediakit {
// RTC配置项目
namespace Rtc {
#define RTC_FIELD "rtc."
//~ nack接收端, rtp发送端
// rtp重发缓存列队最大长度单位毫秒
const string kMaxRtpCacheMS = RTC_FIELD "maxRtpCacheMS";
// rtp重发缓存列队最大长度单位个数
const string kMaxRtpCacheSize = RTC_FIELD "maxRtpCacheSize";
//~ nack发送端rtp接收端
//最大保留的rtp丢包状态个数
const string kNackMaxSize = RTC_FIELD "nackMaxSize";
// rtp丢包状态最长保留时间
const string kNackMaxMS = RTC_FIELD "nackMaxMS";
// nack最多请求重传次数
const string kNackMaxCount = RTC_FIELD "nackMaxCount";
// nack重传频率rtt的倍数
const string kNackIntervalRatio = RTC_FIELD "nackIntervalRatio";
// nack包中rtp个数减小此值可以让nack包响应更灵敏
const string kNackRtpSize = RTC_FIELD "nackRtpSize";
static onceToken token([]() {
mINI::Instance()[kMaxRtpCacheMS] = 5 * 1000;
mINI::Instance()[kMaxRtpCacheSize] = 2048;
mINI::Instance()[kNackMaxSize] = 2048;
mINI::Instance()[kNackMaxMS] = 3 * 1000;
mINI::Instance()[kNackMaxCount] = 15;
mINI::Instance()[kNackIntervalRatio] = 1.0f;
mINI::Instance()[kNackRtpSize] = 8;
});
} // namespace Rtc
2021-06-25 15:43:47 +08:00
void NackList::pushBack(RtpPacket::Ptr rtp) {
GET_CONFIG(uint32_t, max_rtp_cache_ms, Rtc::kMaxRtpCacheMS);
GET_CONFIG(uint32_t, max_rtp_cache_size, Rtc::kMaxRtpCacheSize);
// 记录rtp
2021-06-25 15:43:47 +08:00
auto seq = rtp->getSeq();
_nack_cache_seq.emplace_back(seq);
_nack_cache_pkt.emplace(seq, std::move(rtp));
// 限制rtp缓存最大个数
if (_nack_cache_seq.size() > max_rtp_cache_size) {
popFront();
}
if (++_cache_ms_check < 100) {
// 每100个rtp包检测下缓存长度节省cpu资源
2022-02-27 12:24:54 +08:00
return;
}
_cache_ms_check = 0;
// 限制rtp缓存最大时长
while (getCacheMS() >= max_rtp_cache_ms) {
popFront();
2021-06-25 15:43:47 +08:00
}
}
void NackList::forEach(const FCI_NACK &nack, const function<void(const RtpPacket::Ptr &rtp)> &func) {
2021-06-25 15:43:47 +08:00
auto seq = nack.getPid();
for (auto bit : nack.getBitArray()) {
if (bit) {
2023-02-25 00:19:00 +08:00
// 丢包
RtpPacket::Ptr *ptr = getRtp(seq);
2021-06-25 15:43:47 +08:00
if (ptr) {
func(*ptr);
}
}
++seq;
}
}
void NackList::popFront() {
2021-06-25 15:43:47 +08:00
if (_nack_cache_seq.empty()) {
return;
}
_nack_cache_pkt.erase(_nack_cache_seq.front());
_nack_cache_seq.pop_front();
}
RtpPacket::Ptr *NackList::getRtp(uint16_t seq) {
2021-06-25 15:43:47 +08:00
auto it = _nack_cache_pkt.find(seq);
if (it == _nack_cache_pkt.end()) {
return nullptr;
}
return &it->second;
}
uint32_t NackList::getCacheMS() {
2022-02-27 12:24:54 +08:00
while (_nack_cache_seq.size() > 2) {
auto back_stamp = getNtpStamp(_nack_cache_seq.back());
2022-02-27 12:24:54 +08:00
if (back_stamp == -1) {
_nack_cache_seq.pop_back();
continue;
}
auto front_stamp = getNtpStamp(_nack_cache_seq.front());
2022-02-27 12:24:54 +08:00
if (front_stamp == -1) {
_nack_cache_seq.pop_front();
continue;
}
2022-02-27 12:24:54 +08:00
if (back_stamp >= front_stamp) {
return back_stamp - front_stamp;
}
// ntp时间戳回退了非法数据丢掉
_nack_cache_seq.pop_front();
2021-06-25 15:43:47 +08:00
}
2022-02-27 12:24:54 +08:00
return 0;
}
int64_t NackList::getNtpStamp(uint16_t seq) {
auto it = _nack_cache_pkt.find(seq);
if (it == _nack_cache_pkt.end()) {
return -1;
}
// 使用ntp时间戳不会回退
return it->second->getStampMS(true);
2021-06-25 15:43:47 +08:00
}
////////////////////////////////////////////////////////////////////////////////////////////////
2023-02-25 00:19:00 +08:00
NackContext::NackContext() {
setOnNack(nullptr);
}
void NackContext::received(uint16_t seq, bool is_rtx) {
2023-02-25 00:19:00 +08:00
if (!_started) {
// 记录第一个seq
_started = true;
_nack_seq = seq - 1;
2021-06-25 15:43:47 +08:00
}
2023-02-25 00:19:00 +08:00
if (seq < _nack_seq && _nack_seq != UINT16_MAX && seq < 1024 && _nack_seq > UINT16_MAX - 1024) {
// seq回环,清空回环前状态
makeNack(UINT16_MAX, true);
_seq.emplace(seq);
return;
}
if (is_rtx || (seq < _nack_seq && _nack_seq != UINT16_MAX)) {
// seq非回环回退包猜测其为重传包清空其nack状态
clearNackStatus(seq);
return;
}
auto pr = _seq.emplace(seq);
if (!pr.second) {
// seq重复, 忽略
return;
}
2021-06-25 15:43:47 +08:00
auto max_seq = *_seq.rbegin();
auto min_seq = *_seq.begin();
auto diff = max_seq - min_seq;
2023-02-25 00:19:00 +08:00
if (diff > (UINT16_MAX >> 1)) {
// 回环后收到回环前的大值seq, 忽略掉
_seq.erase(max_seq);
2021-06-25 15:43:47 +08:00
return;
}
if (min_seq == (uint16_t)(_nack_seq + 1) && _seq.size() == (size_t)diff + 1) {
2023-02-25 00:19:00 +08:00
// 都是连续的seq未丢包
2021-06-25 15:43:47 +08:00
_seq.clear();
2023-02-25 00:19:00 +08:00
_nack_seq = max_seq;
} else {
// seq不连续有丢包
makeNack(max_seq, false);
}
}
void NackContext::makeNack(uint16_t max_seq, bool flush) {
// 尝试移除前面部分连续的seq
eraseFrontSeq();
// 最多生成5个nack包防止seq大幅跳跃导致一直循环
auto max_nack = 5u;
GET_CONFIG(uint32_t, nack_rtpsize, Rtc::kNackRtpSize);
// kNackRtpSize must between 0 and 16
nack_rtpsize = std::min<uint32_t>(nack_rtpsize, FCI_NACK::kBitSize);
while (_nack_seq != max_seq && max_nack--) {
// 一次不能发送超过16+1个rtp的状态
uint16_t nack_rtp_count = std::min<uint16_t>(FCI_NACK::kBitSize, max_seq - (uint16_t)(_nack_seq + 1));
if (!flush && nack_rtp_count < nack_rtpsize) {
// 非flush状态下seq个数不足以发送一次nack
break;
}
2023-02-25 00:19:00 +08:00
vector<bool> vec;
vec.resize(nack_rtp_count, false);
for (size_t i = 0; i < nack_rtp_count; ++i) {
vec[i] = _seq.find((uint16_t)(_nack_seq + i + 2)) == _seq.end();
2021-06-25 15:43:47 +08:00
}
2023-02-25 00:19:00 +08:00
doNack(FCI_NACK(_nack_seq + 1, vec), true);
_nack_seq += nack_rtp_count + 1;
// 返回第一个比_last_max_seq大的元素
auto it = _seq.upper_bound(_nack_seq);
// 移除 <=_last_max_seq 的seq
_seq.erase(_seq.begin(), it);
2021-06-25 15:43:47 +08:00
}
}
void NackContext::setOnNack(onNack cb) {
2023-02-25 00:19:00 +08:00
if (cb) {
_cb = std::move(cb);
} else {
_cb = [](const FCI_NACK &nack) {};
}
2021-06-25 15:43:47 +08:00
}
void NackContext::doNack(const FCI_NACK &nack, bool record_nack) {
if (record_nack) {
recordNack(nack);
}
2023-02-25 00:19:00 +08:00
_cb(nack);
2021-06-25 15:43:47 +08:00
}
void NackContext::eraseFrontSeq() {
2023-02-25 00:19:00 +08:00
// 前面部分seq是连续的未丢包移除之
2021-06-25 15:43:47 +08:00
for (auto it = _seq.begin(); it != _seq.end();) {
2023-02-25 00:19:00 +08:00
if (*it != (uint16_t)(_nack_seq + 1)) {
2022-09-18 21:03:05 +08:00
// seq不连续丢包了
2021-06-25 15:43:47 +08:00
break;
}
2023-02-25 00:19:00 +08:00
_nack_seq = *it;
2021-06-25 15:43:47 +08:00
it = _seq.erase(it);
}
}
2023-02-25 00:19:00 +08:00
void NackContext::clearNackStatus(uint16_t seq) {
2021-07-27 20:52:51 +08:00
auto it = _nack_send_status.find(seq);
if (it == _nack_send_status.end()) {
return;
}
//收到重传包与第一个nack包间的时间约等于rtt时间
auto rtt = getCurrentMillisecond() - it->second.first_stamp;
2021-07-27 20:52:51 +08:00
_nack_send_status.erase(it);
2023-03-11 10:16:44 +08:00
// 限定rtt在合理有效范围内
GET_CONFIG(uint32_t, nack_maxms, Rtc::kNackMaxMS);
GET_CONFIG(uint32_t, nack_maxcount, Rtc::kNackMaxCount);
_rtt = max<int>(10, min<int>(rtt, nack_maxms / nack_maxcount));
}
void NackContext::recordNack(const FCI_NACK &nack) {
auto now = getCurrentMillisecond();
auto i = nack.getPid();
for (auto flag : nack.getBitArray()) {
if (flag) {
2021-07-27 20:52:51 +08:00
auto &ref = _nack_send_status[i];
ref.first_stamp = now;
ref.update_stamp = now;
ref.nack_count = 1;
}
++i;
}
2023-02-25 00:19:00 +08:00
// 记录太多了,移除一部分早期的记录
GET_CONFIG(uint32_t, nack_maxsize, Rtc::kNackMaxSize);
while (_nack_send_status.size() > nack_maxsize) {
2021-07-27 20:52:51 +08:00
_nack_send_status.erase(_nack_send_status.begin());
}
}
uint64_t NackContext::reSendNack() {
set<uint16_t> nack_rtp;
auto now = getCurrentMillisecond();
GET_CONFIG(uint32_t, nack_maxms, Rtc::kNackMaxMS);
GET_CONFIG(uint32_t, nack_maxcount, Rtc::kNackMaxCount);
GET_CONFIG(float, nack_intervalratio, Rtc::kNackIntervalRatio);
2021-07-27 20:52:51 +08:00
for (auto it = _nack_send_status.begin(); it != _nack_send_status.end();) {
if (now - it->second.first_stamp > nack_maxms) {
2023-02-25 00:19:00 +08:00
// 该rtp丢失太久了不再要求重传
2021-07-27 20:52:51 +08:00
it = _nack_send_status.erase(it);
continue;
}
if (now - it->second.update_stamp < nack_intervalratio * _rtt) {
2023-02-25 00:19:00 +08:00
// 距离上次nack不足2倍的rtt不用再发送nack
++it;
continue;
}
2023-02-25 00:19:00 +08:00
// 此rtp需要请求重传
nack_rtp.emplace(it->first);
2023-02-25 00:19:00 +08:00
// 更新nack发送时间戳
it->second.update_stamp = now;
if (++(it->second.nack_count) == nack_maxcount) {
2022-09-18 21:03:05 +08:00
// nack次数太多移除之
2021-07-27 20:52:51 +08:00
it = _nack_send_status.erase(it);
continue;
}
++it;
}
int pid = -1;
vector<bool> vec;
for (auto it = nack_rtp.begin(); it != nack_rtp.end();) {
if (pid == -1) {
pid = *it;
vec.assign(FCI_NACK::kBitSize, false);
++it;
continue;
}
auto inc = *it - pid;
2021-12-30 15:28:02 +08:00
if (inc > (ssize_t)FCI_NACK::kBitSize) {
2023-02-25 00:19:00 +08:00
// 新的nack包
doNack(FCI_NACK(pid, vec), false);
pid = -1;
continue;
}
2023-02-25 00:19:00 +08:00
// 这个包丢了
vec[inc - 1] = true;
++it;
}
if (pid != -1) {
doNack(FCI_NACK(pid, vec), false);
}
// 没有任何包需要重传时返回0否则返回下次重传间隔(不得低于5ms)
2023-03-11 10:16:44 +08:00
return _nack_send_status.empty() ? 0 : _rtt;
}
2022-09-18 21:03:05 +08:00
} // namespace mediakit