mirror of
https://github.com/ZLMediaKit/ZLMediaKit.git
synced 2024-11-27 05:38:31 +08:00
272 lines
7.0 KiB
C++
272 lines
7.0 KiB
C++
|
/*
|
||
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
||
|
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
|
||
|
**
|
||
|
** This program is free software; you can redistribute it and/or modify
|
||
|
** it under the terms of the GNU General Public License as published by
|
||
|
** the Free Software Foundation; either version 2 of the License, or
|
||
|
** (at your option) any later version.
|
||
|
**
|
||
|
** This program is distributed in the hope that it will be useful,
|
||
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
** GNU General Public License for more details.
|
||
|
**
|
||
|
** You should have received a copy of the GNU General Public License
|
||
|
** along with this program; if not, write to the Free Software
|
||
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
**
|
||
|
** Any non-GPL usage of this software or parts of this software is strictly
|
||
|
** forbidden.
|
||
|
**
|
||
|
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
|
||
|
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
|
||
|
**
|
||
|
** Commercial non-GPL licensing of this software is possible.
|
||
|
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
|
||
|
**
|
||
|
** $Id: ic_predict.c,v 1.28 2007/11/01 12:33:31 menno Exp $
|
||
|
**/
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "structs.h"
|
||
|
|
||
|
#ifdef MAIN_DEC
|
||
|
|
||
|
#include "syntax.h"
|
||
|
#include "ic_predict.h"
|
||
|
#include "pns.h"
|
||
|
|
||
|
|
||
|
static void flt_round(float32_t *pf)
|
||
|
{
|
||
|
int32_t flg;
|
||
|
uint32_t tmp, tmp1, tmp2;
|
||
|
|
||
|
tmp = *(uint32_t*)pf;
|
||
|
flg = tmp & (uint32_t)0x00008000;
|
||
|
tmp &= (uint32_t)0xffff0000;
|
||
|
tmp1 = tmp;
|
||
|
/* round 1/2 lsb toward infinity */
|
||
|
if (flg)
|
||
|
{
|
||
|
tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
|
||
|
tmp |= (uint32_t)0x00010000; /* insert 1 lsb */
|
||
|
tmp2 = tmp; /* add 1 lsb and elided one */
|
||
|
tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
|
||
|
|
||
|
*pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
|
||
|
} else {
|
||
|
*pf = *(float32_t*)&tmp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int16_t quant_pred(float32_t x)
|
||
|
{
|
||
|
int16_t q;
|
||
|
uint32_t *tmp = (uint32_t*)&x;
|
||
|
|
||
|
q = (int16_t)(*tmp>>16);
|
||
|
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
static float32_t inv_quant_pred(int16_t q)
|
||
|
{
|
||
|
float32_t x;
|
||
|
uint32_t *tmp = (uint32_t*)&x;
|
||
|
*tmp = ((uint32_t)q)<<16;
|
||
|
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
|
||
|
{
|
||
|
uint16_t tmp;
|
||
|
int16_t i, j;
|
||
|
real_t dr1;
|
||
|
float32_t predictedvalue;
|
||
|
real_t e0, e1;
|
||
|
real_t k1, k2;
|
||
|
|
||
|
real_t r[2];
|
||
|
real_t COR[2];
|
||
|
real_t VAR[2];
|
||
|
|
||
|
r[0] = inv_quant_pred(state->r[0]);
|
||
|
r[1] = inv_quant_pred(state->r[1]);
|
||
|
COR[0] = inv_quant_pred(state->COR[0]);
|
||
|
COR[1] = inv_quant_pred(state->COR[1]);
|
||
|
VAR[0] = inv_quant_pred(state->VAR[0]);
|
||
|
VAR[1] = inv_quant_pred(state->VAR[1]);
|
||
|
|
||
|
|
||
|
#if 1
|
||
|
tmp = state->VAR[0];
|
||
|
j = (tmp >> 7);
|
||
|
i = tmp & 0x7f;
|
||
|
if (j >= 128)
|
||
|
{
|
||
|
j -= 128;
|
||
|
k1 = COR[0] * exp_table[j] * mnt_table[i];
|
||
|
} else {
|
||
|
k1 = REAL_CONST(0);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
{
|
||
|
#define B 0.953125
|
||
|
real_t c = COR[0];
|
||
|
real_t v = VAR[0];
|
||
|
float32_t tmp;
|
||
|
if (c == 0 || v <= 1)
|
||
|
{
|
||
|
k1 = 0;
|
||
|
} else {
|
||
|
tmp = B / v;
|
||
|
flt_round(&tmp);
|
||
|
k1 = c * tmp;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (pred)
|
||
|
{
|
||
|
#if 1
|
||
|
tmp = state->VAR[1];
|
||
|
j = (tmp >> 7);
|
||
|
i = tmp & 0x7f;
|
||
|
if (j >= 128)
|
||
|
{
|
||
|
j -= 128;
|
||
|
k2 = COR[1] * exp_table[j] * mnt_table[i];
|
||
|
} else {
|
||
|
k2 = REAL_CONST(0);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
#define B 0.953125
|
||
|
real_t c = COR[1];
|
||
|
real_t v = VAR[1];
|
||
|
float32_t tmp;
|
||
|
if (c == 0 || v <= 1)
|
||
|
{
|
||
|
k2 = 0;
|
||
|
} else {
|
||
|
tmp = B / v;
|
||
|
flt_round(&tmp);
|
||
|
k2 = c * tmp;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
predictedvalue = k1*r[0] + k2*r[1];
|
||
|
flt_round(&predictedvalue);
|
||
|
*output = input + predictedvalue;
|
||
|
}
|
||
|
|
||
|
/* calculate new state data */
|
||
|
e0 = *output;
|
||
|
e1 = e0 - k1*r[0];
|
||
|
dr1 = k1*e0;
|
||
|
|
||
|
VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
|
||
|
COR[0] = ALPHA*COR[0] + r[0]*e0;
|
||
|
VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
|
||
|
COR[1] = ALPHA*COR[1] + r[1]*e1;
|
||
|
|
||
|
r[1] = A * (r[0]-dr1);
|
||
|
r[0] = A * e0;
|
||
|
|
||
|
state->r[0] = quant_pred(r[0]);
|
||
|
state->r[1] = quant_pred(r[1]);
|
||
|
state->COR[0] = quant_pred(COR[0]);
|
||
|
state->COR[1] = quant_pred(COR[1]);
|
||
|
state->VAR[0] = quant_pred(VAR[0]);
|
||
|
state->VAR[1] = quant_pred(VAR[1]);
|
||
|
}
|
||
|
|
||
|
static void reset_pred_state(pred_state *state)
|
||
|
{
|
||
|
state->r[0] = 0;
|
||
|
state->r[1] = 0;
|
||
|
state->COR[0] = 0;
|
||
|
state->COR[1] = 0;
|
||
|
state->VAR[0] = 0x3F80;
|
||
|
state->VAR[1] = 0x3F80;
|
||
|
}
|
||
|
|
||
|
void pns_reset_pred_state(ic_stream *ics, pred_state *state)
|
||
|
{
|
||
|
uint8_t sfb, g, b;
|
||
|
uint16_t i, offs, offs2;
|
||
|
|
||
|
/* prediction only for long blocks */
|
||
|
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
|
||
|
return;
|
||
|
|
||
|
for (g = 0; g < ics->num_window_groups; g++)
|
||
|
{
|
||
|
for (b = 0; b < ics->window_group_length[g]; b++)
|
||
|
{
|
||
|
for (sfb = 0; sfb < ics->max_sfb; sfb++)
|
||
|
{
|
||
|
if (is_noise(ics, g, sfb))
|
||
|
{
|
||
|
offs = ics->swb_offset[sfb];
|
||
|
offs2 = min(ics->swb_offset[sfb+1], ics->swb_offset_max);
|
||
|
|
||
|
for (i = offs; i < offs2; i++)
|
||
|
reset_pred_state(&state[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void reset_all_predictors(pred_state *state, uint16_t frame_len)
|
||
|
{
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < frame_len; i++)
|
||
|
reset_pred_state(&state[i]);
|
||
|
}
|
||
|
|
||
|
/* intra channel prediction */
|
||
|
void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
|
||
|
uint16_t frame_len, uint8_t sf_index)
|
||
|
{
|
||
|
uint8_t sfb;
|
||
|
uint16_t bin;
|
||
|
|
||
|
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
|
||
|
{
|
||
|
reset_all_predictors(state, frame_len);
|
||
|
} else {
|
||
|
for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
|
||
|
{
|
||
|
uint16_t low = ics->swb_offset[sfb];
|
||
|
uint16_t high = min(ics->swb_offset[sfb+1], ics->swb_offset_max);
|
||
|
|
||
|
for (bin = low; bin < high; bin++)
|
||
|
{
|
||
|
ic_predict(&state[bin], spec[bin], &spec[bin],
|
||
|
(ics->predictor_data_present && ics->pred.prediction_used[sfb]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ics->predictor_data_present)
|
||
|
{
|
||
|
if (ics->pred.predictor_reset)
|
||
|
{
|
||
|
for (bin = ics->pred.predictor_reset_group_number - 1;
|
||
|
bin < frame_len; bin += 30)
|
||
|
{
|
||
|
reset_pred_state(&state[bin]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|