ZLMediaKit/src/Rtcp/RtcpFCI.cpp

522 lines
15 KiB
C++
Raw Normal View History

2021-04-13 22:27:57 +08:00
/*
* Copyright (c) 2016 The ZLMediaKit project authors. All Rights Reserved.
*
* This file is part of ZLMediaKit(https://github.com/xia-chu/ZLMediaKit).
*
* Use of this source code is governed by MIT license that can be found in the
* LICENSE file in the root of the source tree. All contributing project authors
* may be found in the AUTHORS file in the root of the source tree.
*/
2021-04-13 18:50:20 +08:00
#include "RtcpFCI.h"
2021-04-23 15:06:55 +08:00
#include "Util/logger.h"
using namespace toolkit;
2021-04-13 22:27:57 +08:00
namespace mediakit {
2021-04-23 15:06:55 +08:00
void FCI_SLI::check(size_t size){
2021-05-10 10:14:00 +08:00
CHECK(size >= kSize);
2021-04-23 15:06:55 +08:00
}
2021-04-14 16:19:46 +08:00
FCI_SLI::FCI_SLI(uint16_t first, uint16_t number, uint8_t pic_id) {
//13 bits
first &= 0x1FFF;
//13 bits
number &= 0x1FFF;
//6 bits
pic_id &= 0x3F;
data = (first << 19) | (number << 6) | pic_id;
data = htonl(data);
}
uint16_t FCI_SLI::getFirst() const {
2021-04-23 15:06:55 +08:00
return ntohl(data) >> 19;
2021-04-14 16:19:46 +08:00
}
uint16_t FCI_SLI::getNumber() const {
2021-04-23 15:06:55 +08:00
return (ntohl(data) >> 6) & 0x1FFF;
2021-04-14 16:19:46 +08:00
}
uint8_t FCI_SLI::getPicID() const {
2021-04-23 15:06:55 +08:00
return ntohl(data) & 0x3F;
2021-04-14 16:19:46 +08:00
}
string FCI_SLI::dumpString() const {
return StrPrinter << "First:" << getFirst() << ", Number:" << getNumber() << ", PictureID:" << (int)getPicID();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
void FCI_FIR::check(size_t size){
2021-05-10 10:14:00 +08:00
CHECK(size >= kSize);
2021-04-23 15:06:55 +08:00
}
uint32_t FCI_FIR::getSSRC() const{
return ntohl(ssrc);
}
uint8_t FCI_FIR::getSeq() const{
return seq_number;
}
uint32_t FCI_FIR::getReserved() const{
return (reserved[0] << 16) | (reserved[1] << 8) | reserved[2];
2021-04-14 16:19:46 +08:00
}
string FCI_FIR::dumpString() const {
2021-04-23 15:06:55 +08:00
return StrPrinter << "ssrc:" << getSSRC() << ", seq_number:" << (int)getSeq() << ", reserved:" << getReserved();
2021-04-14 16:19:46 +08:00
}
FCI_FIR::FCI_FIR(uint32_t ssrc, uint8_t seq_number, uint32_t reserved) {
this->ssrc = htonl(ssrc);
this->seq_number = seq_number;
2021-04-23 15:06:55 +08:00
this->reserved[0] = (reserved >> 16) & 0xFF;
this->reserved[1] = (reserved >> 8) & 0xFF;
this->reserved[2] = reserved & 0xFF;
2021-04-14 16:19:46 +08:00
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
static const char kRembMagic[] = "REMB";
void FCI_REMB::check(size_t size){
CHECK(size >= kSize);
CHECK(memcmp(magic, kRembMagic, sizeof(magic)) == 0);
auto num_ssrc = bitrate[0];
auto expect_size = kSize + 4 * num_ssrc;
2021-05-10 10:14:00 +08:00
CHECK(size >= expect_size);
2021-04-23 15:06:55 +08:00
}
string FCI_REMB::create(const vector<uint32_t> &ssrcs, uint32_t bitrate) {
2021-04-14 16:19:46 +08:00
CHECK(ssrcs.size() > 0 && ssrcs.size() <= 0xFF);
string ret;
ret.resize(kSize + ssrcs.size() * 4);
FCI_REMB *thiz = (FCI_REMB *) ret.data();
2021-04-23 15:06:55 +08:00
memcpy(thiz->magic, kRembMagic, sizeof(magic));
2021-04-14 16:19:46 +08:00
/* bitrate --> BR Exp/BR Mantissa */
uint8_t b = 0;
uint8_t exp = 0;
uint32_t mantissa = 0;
for (b = 0; b < 32; b++) {
if (bitrate <= ((uint32_t) 0x3FFFF << b)) {
exp = b;
break;
}
}
if (b > 31) {
b = 31;
}
mantissa = bitrate >> b;
//Num SSRC (8 bits)
thiz->bitrate[0] = ssrcs.size() & 0xFF;
//BR Exp (6 bits)/BR Mantissa (18 bits)
thiz->bitrate[1] = (uint8_t) ((exp << 2) + ((mantissa >> 16) & 0x03));
//BR Mantissa (18 bits)
thiz->bitrate[2] = (uint8_t) (mantissa >> 8);
//BR Mantissa (18 bits)
thiz->bitrate[3] = (uint8_t) (mantissa);
//设置ssrc列表
auto ptr = thiz->ssrc_feedback;
2021-04-23 15:06:55 +08:00
for (auto ssrc : ssrcs) {
2021-04-14 16:19:46 +08:00
*(ptr++) = htonl(ssrc);
}
return ret;
}
uint32_t FCI_REMB::getBitRate() const {
uint8_t exp = (bitrate[1] >> 2) & 0x3F;
uint32_t mantissa = (bitrate[1] & 0x03) << 16;
mantissa += (bitrate[2] << 8);
mantissa += (bitrate[3]);
return mantissa << exp;
}
2021-04-23 15:06:55 +08:00
vector<uint32_t> FCI_REMB::getSSRC() {
vector<uint32_t> ret;
2021-04-14 16:19:46 +08:00
auto num_ssrc = bitrate[0];
auto ptr = ssrc_feedback;
while (num_ssrc--) {
2021-04-23 15:06:55 +08:00
ret.emplace_back(ntohl(*ptr++));
2021-04-14 16:19:46 +08:00
}
return ret;
}
string FCI_REMB::dumpString() const {
_StrPrinter printer;
printer << "bitrate:" << getBitRate() << ", ssrc:";
for (auto &ssrc : ((FCI_REMB *) this)->getSSRC()) {
2021-04-23 15:06:55 +08:00
printer << ssrc << " ";
2021-04-14 16:19:46 +08:00
}
2021-05-08 19:33:51 +08:00
return std::move(printer);
2021-04-14 16:19:46 +08:00
}
2021-04-13 22:27:57 +08:00
2021-04-20 17:15:01 +08:00
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
FCI_NACK::FCI_NACK(uint16_t pid_h, const vector<bool> &type) {
2021-07-28 12:20:16 +08:00
assert(type.size() <= kBitSize);
2021-04-23 15:06:55 +08:00
uint16_t blp_h = 0;
2021-07-28 12:20:16 +08:00
int i = 0;
2021-04-23 15:06:55 +08:00
for (auto item : type) {
if (item) {
blp_h |= (1 << i);
}
2021-07-28 12:20:16 +08:00
++i;
2021-04-23 15:06:55 +08:00
}
blp = htons(blp_h);
pid = htons(pid_h);
}
void FCI_NACK::check(size_t size){
2021-05-10 10:14:00 +08:00
CHECK(size >= kSize);
2021-04-23 15:06:55 +08:00
}
uint16_t FCI_NACK::getPid() const {
return ntohs(pid);
}
uint16_t FCI_NACK::getBlp() const {
return ntohs(blp);
2021-04-20 17:15:01 +08:00
}
vector<bool> FCI_NACK::getBitArray() const {
vector<bool> ret;
ret.resize(kBitSize + 1);
//nack第一个包丢包
2021-05-11 11:18:55 +08:00
ret[0] = true;
2021-04-23 15:06:55 +08:00
auto blp_h = getBlp();
2021-04-20 17:15:01 +08:00
for (size_t i = 0; i < kBitSize; ++i) {
2021-07-28 12:20:16 +08:00
ret[i + 1] = blp_h & (1 << i);
2021-04-20 17:15:01 +08:00
}
return ret;
}
string FCI_NACK::dumpString() const {
_StrPrinter printer;
auto pid = getPid();
printer << "pid:" << pid << ",blp:" << getBlp() << ",dropped rtp seq:";
2021-04-26 20:29:06 +08:00
for (auto flag : getBitArray()) {
if (flag) {
printer << pid << " ";
}
++pid;
2021-04-20 17:15:01 +08:00
}
return std::move(printer);
}
2021-04-22 11:43:33 +08:00
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
class RunLengthChunk {
public:
static size_t constexpr kSize = 2;
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |T| S | Run Length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#if __BYTE_ORDER == __BIG_ENDIAN
uint16_t type: 1;
uint16_t symbol: 2;
uint16_t run_length_high: 5;
#else
// Run Length 高5位
uint16_t run_length_high: 5;
//参考SymbolStatus定义
uint16_t symbol: 2;
//固定为0
uint16_t type: 1;
#endif
// Run Length 低8位
uint16_t run_length_low: 8;
//获取Run Length
uint16_t getRunLength() const;
//构造函数
RunLengthChunk(SymbolStatus status, uint16_t run_length);
//打印本对象
string dumpString() const;
} PACKED;
2021-04-22 11:43:33 +08:00
RunLengthChunk::RunLengthChunk(SymbolStatus status, uint16_t run_length) {
type = 0;
symbol = (uint8_t)status & 0x03;
run_length_high = (run_length >> 8) & 0x1F;
run_length_low = run_length & 0xFF;
}
uint16_t RunLengthChunk::getRunLength() const {
CHECK(type == 0);
return run_length_high << 8 | run_length_low;
}
string RunLengthChunk::dumpString() const{
_StrPrinter printer;
printer << "run length chunk, symbol:" << (int)symbol << ", run length:" << getRunLength();
return std::move(printer);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
class StatusVecChunk {
public:
static size_t constexpr kSize = 2;
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |T|S| symbol list |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
#if __BYTE_ORDER == __BIG_ENDIAN
uint16_t type: 1;
uint16_t symbol: 1;
uint16_t symbol_list_high: 6;
#else
// symbol_list 高6位
uint16_t symbol_list_high: 6;
//symbol_list中元素是1个还是2个bit
uint16_t symbol: 1;
//固定为1
uint16_t type: 1;
#endif
// symbol_list 低8位
uint16_t symbol_list_low: 8;
//获取symbollist
vector<SymbolStatus> getSymbolList() const;
//构造函数
StatusVecChunk(const vector<SymbolStatus> &status);
//打印本对象
string dumpString() const;
} PACKED;
2021-04-22 11:43:33 +08:00
StatusVecChunk::StatusVecChunk(const vector<SymbolStatus> &status) {
uint16_t value = 0;
type = 1;
if (status.size() == 14) {
symbol = 0;
} else if (status.size() == 7) {
symbol = 1;
} else {
//非法
CHECK(0);
}
int i = 13;
for (auto &item : status) {
CHECK(item <= SymbolStatus::reserved);
if (!symbol) {
CHECK(item <= SymbolStatus::small_delta);
value |= (int) item << i;
--i;
} else {
value |= (int) item << (i - 1);
i -= 2;
}
}
symbol_list_low = value & 0xFF;
symbol_list_high = (value >> 8 ) & 0x1F;
}
vector<SymbolStatus> StatusVecChunk::getSymbolList() const {
CHECK(type == 1);
vector<SymbolStatus> ret;
auto thiz = ntohs(*((uint16_t *) this));
if (symbol == 0) {
//s = 0 时表示symbollist的每一个bit能表示一个数据包的到达状态
for (int i = 13; i >= 0; --i) {
SymbolStatus status = (SymbolStatus) ((bool) (thiz & (1 << i)));
ret.emplace_back(status);
}
} else {
//s = 1 时表示symbollist每两个bit表示一个数据包的状态
for (int i = 12; i >= 0; i -= 2) {
SymbolStatus status = (SymbolStatus) ((thiz & (3 << i)) >> i);
ret.emplace_back(status);
}
}
return ret;
}
string StatusVecChunk::dumpString() const {
_StrPrinter printer;
printer << "status vector chunk, symbol:" << (int) symbol << ", symbol list:";
auto vec = getSymbolList();
for (auto &item : vec) {
printer << (int) item << " ";
}
return std::move(printer);
}
2021-04-20 17:15:01 +08:00
2021-04-22 17:34:26 +08:00
///////////////////////////////////////////////////////
2021-04-23 15:06:55 +08:00
void FCI_TWCC::check(size_t size){
CHECK(size >= kSize);
}
uint16_t FCI_TWCC::getBaseSeq() const {
return ntohs(base_seq);
}
uint16_t FCI_TWCC::getPacketCount() const {
return ntohs(pkt_status_count);
2021-04-22 17:34:26 +08:00
}
uint32_t FCI_TWCC::getReferenceTime() const {
uint32_t ret = 0;
ret |= ref_time[0] << 16;
ret |= ref_time[1] << 8;
ret |= ref_time[2];
return ret;
}
2021-04-22 18:56:12 +08:00
//3.1.5. Receive Delta
//
// Deltas are represented as multiples of 250us:
//
// o If the "Packet received, small delta" symbol has been appended to
// the status list, an 8-bit unsigned receive delta will be appended
// to recv delta list, representing a delta in the range [0, 63.75]
// ms.
//
// o If the "Packet received, large or negative delta" symbol has been
// appended to the status list, a 16-bit signed receive delta will be
// appended to recv delta list, representing a delta in the range
// [-8192.0, 8191.75] ms.
//
// o If the delta exceeds even the larger limits, a new feedback
// message must be used, where the 24-bit base receive delta can
// cover very large gaps.
//
// The smaller receive delta upper bound of 63.75 ms means that this is
// only viable at about 1000/25.5 ~= 16 packets per second and above.
// With a packet size of 1200 bytes/packet that amounts to a bitrate of
// about 150 kbit/s.
//
// The 0.25 ms resolution means that up to 4000 packets per second can
// be represented. With a 1200 bytes/packet payload, that amounts to
// 38.4 Mbit/s payload bandwidth.
static int16_t getRecvDelta(SymbolStatus status, uint8_t *&ptr, const uint8_t *end){
int16_t delta = 0;
2021-04-22 17:34:26 +08:00
switch (status) {
case SymbolStatus::not_received : {
//丢包, recv delta为0个字节
break;
}
case SymbolStatus::small_delta : {
CHECK(ptr + 1 <= end);
//时间戳增量小于256 recv delta为1个字节
delta = *ptr;
ptr += 1;
break;
}
case SymbolStatus::large_delta : {
CHECK(ptr + 2 <= end);
//时间戳增量256~65535间recv delta为2个字节
delta = *ptr << 8 | *(ptr + 1);
ptr += 2;
break;
}
2021-05-06 12:01:56 +08:00
case SymbolStatus::reserved : {
//没有时间戳
break;
}
2021-04-22 17:34:26 +08:00
default:
//这个逻辑分支不可达到
CHECK(0);
break;
}
return delta;
}
2021-10-06 22:17:38 +08:00
map<uint16_t, std::pair<SymbolStatus, int16_t/*stamp*/> > FCI_TWCC::getPacketChunkList(size_t total_size) const {
map<uint16_t, std::pair<SymbolStatus, int16_t> > ret;
2021-04-22 17:34:26 +08:00
auto ptr = (uint8_t *) this + kSize;
auto end = (uint8_t *) this + total_size;
CHECK(ptr < end);
2021-04-23 15:06:55 +08:00
auto seq = getBaseSeq();
2021-04-26 21:50:31 +08:00
auto rtp_count = getPacketCount();
for (uint8_t i = 0; i < rtp_count;) {
2021-04-23 15:06:55 +08:00
CHECK(ptr + RunLengthChunk::kSize <= end);
2021-04-22 17:34:26 +08:00
RunLengthChunk *chunk = (RunLengthChunk *) ptr;
if (!chunk->type) {
//RunLengthChunk
for (auto j = 0; j < chunk->getRunLength(); ++j) {
2021-04-22 18:56:12 +08:00
ret.emplace(seq++, std::make_pair((SymbolStatus) chunk->symbol, 0));
2021-04-26 21:50:31 +08:00
if (++i >= rtp_count) {
break;
}
2021-04-22 17:34:26 +08:00
}
} else {
//StatusVecChunk
StatusVecChunk *chunk = (StatusVecChunk *) ptr;
for (auto &symbol : chunk->getSymbolList()) {
2021-04-22 18:56:12 +08:00
ret.emplace(seq++, std::make_pair(symbol, 0));
2021-04-26 21:50:31 +08:00
if (++i >= rtp_count) {
break;
}
2021-04-22 17:34:26 +08:00
}
}
2021-04-22 18:56:12 +08:00
ptr += 2;
}
for (auto &pr : ret) {
2021-04-23 15:06:55 +08:00
CHECK(ptr <= end);
2021-09-25 17:34:12 +08:00
pr.second.second = getRecvDelta(pr.second.first, ptr, end);
2021-04-22 17:34:26 +08:00
}
return ret;
}
string FCI_TWCC::dumpString(size_t total_size) const {
_StrPrinter printer;
auto map = getPacketChunkList(total_size);
2021-04-26 21:03:04 +08:00
printer << "twcc fci, base_seq:" << getBaseSeq() << ", pkt_status_count:" << getPacketCount() << ", ref time:" << getReferenceTime() << ", fb count:" << (int)fb_pkt_count << "\n";
2021-04-22 17:34:26 +08:00
for (auto &pr : map) {
2021-04-22 18:56:12 +08:00
printer << "rtp seq:" << pr.first <<", packet status:" << (int)(pr.second.first) << ", delta:" << pr.second.second << "\n";
2021-04-22 17:34:26 +08:00
}
return std::move(printer);
}
2021-04-23 15:06:55 +08:00
}//namespace mediakit
#if 1
using namespace mediakit;
void testFCI() {
{
FCI_SLI fci(8191, 0, 63);
InfoL << hexdump(&fci, FCI_SLI::kSize) << fci.dumpString();
}
{
FCI_FIR fci(123456, 139, 456789);
InfoL << hexdump(&fci, FCI_FIR::kSize) << fci.dumpString();
}
{
auto str = FCI_REMB::create({1234, 2345, 5678}, 4 * 1024 * 1024);
FCI_REMB *ptr = (FCI_REMB *) str.data();
InfoL << hexdump(str.data(), str.size()) << ptr->dumpString();
}
{
FCI_NACK nack(1234, vector<bool>({1, 0, 0, 0, 1, 0, 1, 0, 1, 0}));
InfoL << hexdump(&nack, FCI_NACK::kSize) << nack.dumpString();
}
{
RunLengthChunk chunk(SymbolStatus::large_delta, 8024);
InfoL << hexdump(&chunk, RunLengthChunk::kSize) << chunk.dumpString();
}
auto lam = [](const initializer_list<int> &lst) {
vector<SymbolStatus> ret;
for (auto &num : lst) {
ret.emplace_back((SymbolStatus) num);
}
return ret;
};
{
StatusVecChunk chunk(lam({0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1}));
InfoL << hexdump(&chunk, StatusVecChunk::kSize) << chunk.dumpString();
}
{
StatusVecChunk chunk(lam({0, 1, 2, 2, 0, 1, 2}));
InfoL << hexdump(&chunk, StatusVecChunk::kSize) << chunk.dumpString();
}
}
#endif