/* * Copyright (c) 2016 The ZLMediaKit project authors. All Rights Reserved. * * This file is part of ZLMediaKit(https://github.com/xia-chu/ZLMediaKit). * * Use of this source code is governed by MIT license that can be found in the * LICENSE file in the root of the source tree. All contributing project authors * may be found in the AUTHORS file in the root of the source tree. */ #include "H264Rtp.h" #include "Common/config.h" namespace mediakit{ #if defined(_WIN32) #pragma pack(push, 1) #endif // defined(_WIN32) class FuFlags { public: #if __BYTE_ORDER == __BIG_ENDIAN unsigned start_bit: 1; unsigned end_bit: 1; unsigned reserved: 1; unsigned nal_type: 5; #else unsigned nal_type: 5; unsigned reserved: 1; unsigned end_bit: 1; unsigned start_bit: 1; #endif } PACKED; #if defined(_WIN32) #pragma pack(pop) #endif // defined(_WIN32) H264RtpDecoder::H264RtpDecoder() { _frame = obtainFrame(); } H264Frame::Ptr H264RtpDecoder::obtainFrame() { auto frame = FrameImp::create(); frame->_prefix_size = 4; return frame; } bool H264RtpDecoder::inputRtp(const RtpPacket::Ptr &rtp, bool key_pos) { auto seq = rtp->getSeq(); auto ret = decodeRtp(rtp); if (!_gop_dropped && seq != (uint16_t) (_last_seq + 1) && _last_seq) { _gop_dropped = true; WarnL << "start drop h264 gop, last seq:" << _last_seq << ", rtp:\r\n" << rtp->dumpString(); } _last_seq = seq; return ret; } /* RTF3984 5.2节 Common Structure of the RTP Payload Format Table 1. Summary of NAL unit types and their payload structures Type Packet Type name Section --------------------------------------------------------- 0 undefined - 1-23 NAL unit Single NAL unit packet per H.264 5.6 24 STAP-A Single-time aggregation packet 5.7.1 25 STAP-B Single-time aggregation packet 5.7.1 26 MTAP16 Multi-time aggregation packet 5.7.2 27 MTAP24 Multi-time aggregation packet 5.7.2 28 FU-A Fragmentation unit 5.8 29 FU-B Fragmentation unit 5.8 30-31 undefined - */ bool H264RtpDecoder::singleFrame(const RtpPacket::Ptr &rtp, const uint8_t *ptr, ssize_t size, uint64_t stamp){ _frame->_buffer.assign("\x00\x00\x00\x01", 4); _frame->_buffer.append((char *) ptr, size); _frame->_pts = stamp; auto key = _frame->keyFrame(); outputFrame(rtp, _frame); return key; } bool H264RtpDecoder::unpackStapA(const RtpPacket::Ptr &rtp, const uint8_t *ptr, ssize_t size, uint64_t stamp) { //STAP-A 单一时间的组合包 auto have_key_frame = false; auto end = ptr + size; while (ptr + 2 < end) { uint16_t len = (ptr[0] << 8) | ptr[1]; if (!len || ptr + len > end) { WarnL << "invalid rtp data size:" << len << ",rtp:\r\n" << rtp->dumpString(); _gop_dropped = true; break; } ptr += 2; if (singleFrame(rtp, ptr, len, stamp)) { have_key_frame = true; } ptr += len; } return have_key_frame; } bool H264RtpDecoder::mergeFu(const RtpPacket::Ptr &rtp, const uint8_t *ptr, ssize_t size, uint64_t stamp, uint16_t seq){ auto nal_suffix = *ptr & (~0x1F); FuFlags *fu = (FuFlags *) (ptr + 1); if (fu->start_bit) { //该帧的第一个rtp包 _frame->_buffer.assign("\x00\x00\x00\x01", 4); _frame->_buffer.push_back(nal_suffix | fu->nal_type); _frame->_pts = stamp; _fu_dropped = false; } if (_fu_dropped) { //该帧不完整 return false; } if (!fu->start_bit && seq != (uint16_t) (_last_seq + 1)) { //中间的或末尾的rtp包,其seq必须连续,否则说明rtp丢包,那么该帧不完整,必须得丢弃 _fu_dropped = true; _frame->_buffer.clear(); return false; } //后面追加数据 _frame->_buffer.append((char *) ptr + 2, size - 2); if (!fu->end_bit) { //非末尾包 return fu->start_bit ? _frame->keyFrame() : false; } //确保下一次fu必须收到第一个包 _fu_dropped = true; //该帧最后一个rtp包,输出frame outputFrame(rtp, _frame); return false; } bool H264RtpDecoder::decodeRtp(const RtpPacket::Ptr &rtp) { auto payload_size = rtp->getPayloadSize(); if (payload_size <= 0) { //无实际负载 return false; } auto frame = rtp->getPayload(); auto stamp = rtp->getStampMS(); auto seq = rtp->getSeq(); int nal = H264_TYPE(frame[0]); switch (nal) { case 24: // 24 STAP-A Single-time aggregation packet 5.7.1 return unpackStapA(rtp, frame + 1, payload_size - 1, stamp); case 28: // 28 FU-A Fragmentation unit return mergeFu(rtp, frame, payload_size, stamp, seq); default: { if (nal < 24) { //Single NAL Unit Packets return singleFrame(rtp, frame, payload_size, stamp); } _gop_dropped = true; WarnL << "不支持该类型的264 RTP包, nal type:" << nal << ", rtp:\r\n" << rtp->dumpString(); return false; } } } void H264RtpDecoder::outputFrame(const RtpPacket::Ptr &rtp, const H264Frame::Ptr &frame) { if (frame->dropAble()) { //不参与dts生成 frame->_dts = frame->_pts; } else { //rtsp没有dts,那么根据pts排序算法生成dts _dts_generator.getDts(frame->_pts, frame->_dts); } if (frame->keyFrame() && _gop_dropped) { _gop_dropped = false; InfoL << "new gop received, rtp:\r\n" << rtp->dumpString(); } if (!_gop_dropped) { RtpCodec::inputFrame(frame); } _frame = obtainFrame(); } //////////////////////////////////////////////////////////////////////// H264RtpEncoder::H264RtpEncoder(uint32_t ssrc, uint32_t mtu, uint32_t sample_rate, uint8_t pt, uint8_t interleaved) : RtpInfo(ssrc, mtu, sample_rate, pt, interleaved) { } void H264RtpEncoder::insertConfigFrame(uint64_t pts){ if (!_sps || !_pps) { return; } //gop缓存从sps开始,sps、pps后面还有时间戳相同的关键帧,所以mark bit为false packRtp(_sps->data() + _sps->prefixSize(), _sps->size() - _sps->prefixSize(), pts, false, true); packRtp(_pps->data() + _pps->prefixSize(), _pps->size() - _pps->prefixSize(), pts, false, false); } void H264RtpEncoder::packRtp(const char *ptr, size_t len, uint64_t pts, bool is_mark, bool gop_pos){ if (len + 3 <= getMaxSize()) { //STAP-A模式打包小于MTU packRtpStapA(ptr, len, pts, is_mark, gop_pos); } else { //STAP-A模式打包会大于MTU,所以采用FU-A模式 packRtpFu(ptr, len, pts, is_mark, gop_pos); } } void H264RtpEncoder::packRtpFu(const char *ptr, size_t len, uint64_t pts, bool is_mark, bool gop_pos){ auto packet_size = getMaxSize() - 2; if (len <= packet_size + 1) { //小于FU-A打包最小字节长度要求,采用STAP-A模式 packRtpStapA(ptr, len, pts, is_mark, gop_pos); return; } //末尾5bit为nalu type,固定为28(FU-A) auto fu_char_0 = (ptr[0] & (~0x1F)) | 28; auto fu_char_1 = H264_TYPE(ptr[0]); FuFlags *fu_flags = (FuFlags *) (&fu_char_1); fu_flags->start_bit = 1; size_t offset = 1; while (!fu_flags->end_bit) { if (!fu_flags->start_bit && len <= offset + packet_size) { //FU-A end packet_size = len - offset; fu_flags->end_bit = 1; } //传入nullptr先不做payload的内存拷贝 auto rtp = makeRtp(getTrackType(), nullptr, packet_size + 2, fu_flags->end_bit && is_mark, pts); //rtp payload 负载部分 uint8_t *payload = rtp->getPayload(); //FU-A 第1个字节 payload[0] = fu_char_0; //FU-A 第2个字节 payload[1] = fu_char_1; //H264 数据 memcpy(payload + 2, (uint8_t *) ptr + offset, packet_size); //输入到rtp环形缓存 RtpCodec::inputRtp(rtp, gop_pos); offset += packet_size; fu_flags->start_bit = 0; } } void H264RtpEncoder::packRtpStapA(const char *ptr, size_t len, uint64_t pts, bool is_mark, bool gop_pos){ //如果帧长度不超过mtu,为了兼容性 webrtc,采用STAP-A模式打包 auto rtp = makeRtp(getTrackType(), nullptr, len + 3, is_mark, pts); uint8_t *payload = rtp->getPayload(); //STAP-A payload[0] = (ptr[0] & (~0x1F)) | 24; payload[1] = (len >> 8) & 0xFF; payload[2] = len & 0xff; memcpy(payload + 3, (uint8_t *) ptr, len); RtpCodec::inputRtp(rtp, gop_pos); } bool H264RtpEncoder::inputFrame(const Frame::Ptr &frame) { auto ptr = frame->data() + frame->prefixSize(); switch (H264_TYPE(ptr[0])) { case H264Frame::NAL_SPS: { _sps = Frame::getCacheAbleFrame(frame); return true; } case H264Frame::NAL_PPS: { _pps = Frame::getCacheAbleFrame(frame); return true; } default: break; } GET_CONFIG(int,lowLatency,Rtp::kLowLatency); if (lowLatency) { // 低延迟模式 if (_last_frame) { flush(); } inputFrame_l(frame, true); } else { if (_last_frame) { //如果时间戳发生了变化,那么markbit才置true inputFrame_l(_last_frame, _last_frame->pts() != frame->pts()); } _last_frame = Frame::getCacheAbleFrame(frame); } return true; } void H264RtpEncoder::flush() { if (_last_frame) { // 如果时间戳发生了变化,那么markbit才置true inputFrame_l(_last_frame, true); _last_frame = nullptr; } } bool H264RtpEncoder::inputFrame_l(const Frame::Ptr &frame, bool is_mark){ if (frame->keyFrame()) { //保证每一个关键帧前都有SPS与PPS insertConfigFrame(frame->pts()); } packRtp(frame->data() + frame->prefixSize(), frame->size() - frame->prefixSize(), frame->pts(), is_mark, false); return true; } }//namespace mediakit