/* * Copyright (c) 2016-present The ZLMediaKit project authors. All Rights Reserved. * * This file is part of ZLMediaKit(https://github.com/ZLMediaKit/ZLMediaKit). * * Use of this source code is governed by MIT-like license that can be found in the * LICENSE file in the root of the source tree. All contributing project authors * may be found in the AUTHORS file in the root of the source tree. */ #include "Stamp.h" // 时间戳最大允许跳变3秒,主要是防止网络抖动导致的跳变 #define MAX_DELTA_STAMP (3 * 1000) #define STAMP_LOOP_DELTA (60 * 1000) #define MAX_CTS 500 #define ABS(x) ((x) > 0 ? (x) : (-x)) using namespace toolkit; namespace mediakit { DeltaStamp::DeltaStamp() { // 时间戳最大允许跳跃300ms _max_delta = 300; } int64_t DeltaStamp::relativeStamp(int64_t stamp, bool enable_rollback) { _relative_stamp += deltaStamp(stamp, enable_rollback); return _relative_stamp; } int64_t DeltaStamp::relativeStamp() { return _relative_stamp; } int64_t DeltaStamp::deltaStamp(int64_t stamp, bool enable_rollback) { if (!_last_stamp) { // 第一次计算时间戳增量,时间戳增量为0 if (stamp) { _last_stamp = stamp; } return 0; } int64_t ret = stamp - _last_stamp; if (ret >= 0) { // 时间戳增量为正,返回之 _last_stamp = stamp; // 在直播情况下,时间戳增量不得大于MAX_DELTA_STAMP,否则强制相对时间戳加1 if (ret > _max_delta) { needSync(); return 1; } return ret; } // 时间戳增量为负,说明时间戳回环了或回退了 _last_stamp = stamp; if (!enable_rollback || -ret > _max_delta) { // 不允许回退或者回退太多了, 强制时间戳加1 needSync(); return 1; } return ret; } void DeltaStamp::setMaxDelta(size_t max_delta) { _max_delta = max_delta; } void Stamp::setPlayBack(bool playback) { _playback = playback; } void Stamp::syncTo(Stamp &other) { _need_sync = true; _sync_master = &other; } void Stamp::needSync() { _need_sync = true; } void Stamp::enableRollback(bool flag) { _enable_rollback = flag; } // 限制dts回退 void Stamp::revise(int64_t dts, int64_t pts, int64_t &dts_out, int64_t &pts_out, bool modifyStamp) { revise_l(dts, pts, dts_out, pts_out, modifyStamp); if (_playback) { // 回放允许时间戳回退 return; } if (dts_out < _last_dts_out) { // WarnL << "dts回退:" << dts_out << " < " << _last_dts_out; dts_out = _last_dts_out; pts_out = _last_pts_out; return; } _last_dts_out = dts_out; _last_pts_out = pts_out; } // 音视频时间戳同步 void Stamp::revise_l(int64_t dts, int64_t pts, int64_t &dts_out, int64_t &pts_out, bool modifyStamp) { revise_l2(dts, pts, dts_out, pts_out, modifyStamp); if (!_sync_master || modifyStamp || _playback) { // 自动生成时间戳或回放或同步完毕 return; } // 需要同步时间戳 if (_sync_master && _sync_master->_last_dts_in && (_need_sync || _sync_master->_need_sync)) { // 音视频dts当前时间差 int64_t dts_diff = _last_dts_in - _sync_master->_last_dts_in; if (ABS(dts_diff) < 5000) { // 如果绝对时间戳小于5秒,那么说明他们的起始时间戳是一致的,那么强制同步 auto target_stamp = _sync_master->_relative_stamp + dts_diff; if (target_stamp > _relative_stamp || _enable_rollback) { // 强制同步后,时间戳增加跳跃了,或允许回退 TraceL << "Relative stamp changed: " << _relative_stamp << " -> " << target_stamp; _relative_stamp = target_stamp; } else { // 不允许回退, 则让另外一个Track的时间戳增长 target_stamp = _relative_stamp - dts_diff; TraceL << "Relative stamp changed: " << _sync_master->_relative_stamp << " -> " << target_stamp; _sync_master->_relative_stamp = target_stamp; } } _need_sync = false; _sync_master->_need_sync = false; } } // 求取相对时间戳 void Stamp::revise_l2(int64_t dts, int64_t pts, int64_t &dts_out, int64_t &pts_out, bool modifyStamp) { if (!pts) { // 没有播放时间戳,使其赋值为解码时间戳 pts = dts; } if (_playback) { // 这是点播 dts_out = dts; pts_out = pts; _relative_stamp = dts_out; _last_dts_in = dts; return; } // pts和dts的差值 int64_t pts_dts_diff = pts - dts; if (_last_dts_in != dts) { // 时间戳发生变更 if (modifyStamp) { // 内部自己生产时间戳 _relative_stamp = _ticker.elapsedTime(); } else { _relative_stamp += deltaStamp(dts, _enable_rollback); } _last_dts_in = dts; } dts_out = _relative_stamp; //////////////以下是播放时间戳的计算////////////////// if (ABS(pts_dts_diff) > MAX_CTS) { // 如果差值太大,则认为由于回环导致时间戳错乱了 pts_dts_diff = 0; } pts_out = dts_out + pts_dts_diff; } void Stamp::setRelativeStamp(int64_t relativeStamp) { _relative_stamp = relativeStamp; } int64_t Stamp::getRelativeStamp() const { return _relative_stamp; } bool DtsGenerator::getDts(uint64_t pts, uint64_t &dts) { bool ret = false; if (pts == _last_pts) { // pts未变,说明dts也不会变,返回上次dts if (_last_dts) { dts = _last_dts; ret = true; } } else { // pts变了,尝试计算dts ret = getDts_l(pts, dts); if (ret) { // 获取到了dts,保存本次结果 _last_dts = dts; } } if (!ret) { // pts排序列队长度还不知道,也就是不知道有没有B帧, // 那么先强制dts == pts,这样可能导致有B帧的情况下,起始画面有几帧回退 dts = pts; } // 记录上次pts _last_pts = pts; return ret; } // 该算法核心思想是对pts进行排序,排序好的pts就是dts。 // 排序有一定的滞后性,那么需要加上排序导致的时间戳偏移量 bool DtsGenerator::getDts_l(uint64_t pts, uint64_t &dts) { if (_sorter_max_size == 1) { // 没有B帧,dts就等于pts dts = pts; return true; } if (!_sorter_max_size) { // 尚未计算出pts排序列队长度(也就是P帧间B帧个数) if (pts > _last_max_pts) { // pts时间戳增加了,那么说明这帧画面不是B帧(说明是P帧或关键帧) if (_frames_since_last_max_pts && _count_sorter_max_size++ > 0) { // 已经出现多次非B帧的情况,那么我们就能知道P帧间B帧的个数 _sorter_max_size = _frames_since_last_max_pts; // 我们记录P帧间时间间隔(也就是多个B帧时间戳增量累计) _dts_pts_offset = (pts - _last_max_pts); // 除以2,防止dts大于pts _dts_pts_offset /= 2; } // 遇到P帧或关键帧,连续B帧计数清零 _frames_since_last_max_pts = 0; // 记录上次非B帧的pts时间戳(同时也是dts),用于统计连续B帧时间戳增量 _last_max_pts = pts; } // 如果pts时间戳小于上一个P帧,那么断定这个是B帧,我们记录B帧连续个数 ++_frames_since_last_max_pts; } // pts放入排序缓存列队,缓存列队最大等于连续B帧个数 _pts_sorter.emplace(pts); if (_sorter_max_size && _pts_sorter.size() > _sorter_max_size) { // 如果启用了pts排序(意味着存在B帧),并且pts排序缓存列队长度大于连续B帧个数, // 意味着后续的pts都会比最早的pts大,那么说明可以取出最早的pts了,这个pts将当做该帧的dts基准 auto it = _pts_sorter.begin(); // 由于该pts是前面偏移了个_sorter_max_size帧的pts(也就是那帧画面的dts), // 那么我们加上时间戳偏移量,基本等于该帧的dts dts = *it + _dts_pts_offset; if (dts > pts) { // dts不能大于pts(基本不可能到达这个逻辑) dts = pts; } // pts排序缓存出列 _pts_sorter.erase(it); return true; } // 排序缓存尚未满 return false; } void NtpStamp::setNtpStamp(uint32_t rtp_stamp, uint64_t ntp_stamp_ms) { if (!ntp_stamp_ms || !rtp_stamp) { // 实测发现有些rtsp服务器发送的rtp时间戳和ntp时间戳一直为0 WarnL << "Invalid sender report rtcp, ntp_stamp_ms = " << ntp_stamp_ms << ", rtp_stamp = " << rtp_stamp; return; } update(rtp_stamp, ntp_stamp_ms * 1000); } void NtpStamp::update(uint32_t rtp_stamp, uint64_t ntp_stamp_us) { _last_rtp_stamp = rtp_stamp; _last_ntp_stamp_us = ntp_stamp_us; } uint64_t NtpStamp::getNtpStamp(uint32_t rtp_stamp, uint32_t sample_rate) { if (rtp_stamp == _last_rtp_stamp) { return _last_ntp_stamp_us / 1000; } return getNtpStampUS(rtp_stamp, sample_rate) / 1000; } uint64_t NtpStamp::getNtpStampUS(uint32_t rtp_stamp, uint32_t sample_rate) { if (!_last_ntp_stamp_us) { // 尚未收到sender report rtcp包,那么赋值为本地系统时间戳吧 update(rtp_stamp, getCurrentMicrosecond(true)); } // rtp时间戳正增长 if (rtp_stamp >= _last_rtp_stamp) { auto diff_us = static_cast((rtp_stamp - _last_rtp_stamp) / (sample_rate / 1000000.0f)); if (diff_us < MAX_DELTA_STAMP * 1000) { // 时间戳正常增长 update(rtp_stamp, _last_ntp_stamp_us + diff_us); return _last_ntp_stamp_us; } // 时间戳大幅跳跃 uint64_t loop_delta_hz = STAMP_LOOP_DELTA * sample_rate / 1000; if (_last_rtp_stamp < loop_delta_hz && rtp_stamp > UINT32_MAX - loop_delta_hz) { // 应该是rtp时间戳溢出+乱序 uint64_t max_rtp_us = uint64_t(UINT32_MAX) * 1000000 / sample_rate; return _last_ntp_stamp_us + diff_us - max_rtp_us; } // 不明原因的时间戳大幅跳跃,直接返回上次值 WarnL << "rtp stamp abnormal increased:" << _last_rtp_stamp << " -> " << rtp_stamp; update(rtp_stamp, _last_ntp_stamp_us); return _last_ntp_stamp_us; } // rtp时间戳负增长 auto diff_us = static_cast((_last_rtp_stamp - rtp_stamp) / (sample_rate / 1000000.0f)); if (diff_us < MAX_DELTA_STAMP * 1000) { // 正常范围的时间戳回退,说明收到rtp乱序了 return _last_ntp_stamp_us - diff_us; } // 时间戳大幅度回退 uint64_t loop_delta_hz = STAMP_LOOP_DELTA * sample_rate / 1000; if (rtp_stamp < loop_delta_hz && _last_rtp_stamp > UINT32_MAX - loop_delta_hz) { // 确定是时间戳溢出 uint64_t max_rtp_us = uint64_t(UINT32_MAX) * 1000000 / sample_rate; update(rtp_stamp, _last_ntp_stamp_us + (max_rtp_us - diff_us)); return _last_ntp_stamp_us; } // 不明原因的时间戳回退,直接返回上次值 WarnL << "rtp stamp abnormal reduced:" << _last_rtp_stamp << " -> " << rtp_stamp; update(rtp_stamp, _last_ntp_stamp_us); return _last_ntp_stamp_us; } } // namespace mediakit