mirror of
https://github.com/crystalidea/qt6windows7.git
synced 2024-11-26 22:27:06 +08:00
793 lines
29 KiB
C++
793 lines
29 KiB
C++
// Copyright (C) 2017 The Qt Company Ltd.
|
|
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
|
|
|
|
#include "hellovulkantexture.h"
|
|
#include <QVulkanFunctions>
|
|
#include <QCoreApplication>
|
|
#include <QFile>
|
|
|
|
// Use a triangle strip to get a quad.
|
|
//
|
|
// Note that the vertex data and the projection matrix assume OpenGL. With
|
|
// Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead
|
|
// of -1/1. These will be corrected for by an extra transformation when
|
|
// calculating the modelview-projection matrix.
|
|
static float vertexData[] = { // Y up, front = CW
|
|
// x, y, z, u, v
|
|
-1, -1, 0, 0, 1,
|
|
-1, 1, 0, 0, 0,
|
|
1, -1, 0, 1, 1,
|
|
1, 1, 0, 1, 0
|
|
};
|
|
|
|
static const int UNIFORM_DATA_SIZE = 16 * sizeof(float);
|
|
|
|
static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
|
|
{
|
|
return (v + byteAlign - 1) & ~(byteAlign - 1);
|
|
}
|
|
|
|
QVulkanWindowRenderer *VulkanWindow::createRenderer()
|
|
{
|
|
return new VulkanRenderer(this);
|
|
}
|
|
|
|
VulkanRenderer::VulkanRenderer(QVulkanWindow *w)
|
|
: m_window(w)
|
|
{
|
|
}
|
|
|
|
VkShaderModule VulkanRenderer::createShader(const QString &name)
|
|
{
|
|
QFile file(name);
|
|
if (!file.open(QIODevice::ReadOnly)) {
|
|
qWarning("Failed to read shader %s", qPrintable(name));
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
QByteArray blob = file.readAll();
|
|
file.close();
|
|
|
|
VkShaderModuleCreateInfo shaderInfo;
|
|
memset(&shaderInfo, 0, sizeof(shaderInfo));
|
|
shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
shaderInfo.codeSize = blob.size();
|
|
shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData());
|
|
VkShaderModule shaderModule;
|
|
VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to create shader module: %d", err);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
return shaderModule;
|
|
}
|
|
|
|
bool VulkanRenderer::createTexture(const QString &name)
|
|
{
|
|
QImage img(name);
|
|
if (img.isNull()) {
|
|
qWarning("Failed to load image %s", qPrintable(name));
|
|
return false;
|
|
}
|
|
|
|
// Convert to byte ordered RGBA8. Use premultiplied alpha, see pColorBlendState in the pipeline.
|
|
img = img.convertToFormat(QImage::Format_RGBA8888_Premultiplied);
|
|
|
|
QVulkanFunctions *f = m_window->vulkanInstance()->functions();
|
|
VkDevice dev = m_window->device();
|
|
|
|
const bool srgb = QCoreApplication::arguments().contains(QStringLiteral("--srgb"));
|
|
if (srgb)
|
|
qDebug("sRGB swapchain was requested, making texture sRGB too");
|
|
|
|
m_texFormat = srgb ? VK_FORMAT_R8G8B8A8_SRGB : VK_FORMAT_R8G8B8A8_UNORM;
|
|
|
|
// Now we can either map and copy the image data directly, or have to go
|
|
// through a staging buffer to copy and convert into the internal optimal
|
|
// tiling format.
|
|
VkFormatProperties props;
|
|
f->vkGetPhysicalDeviceFormatProperties(m_window->physicalDevice(), m_texFormat, &props);
|
|
const bool canSampleLinear = (props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
|
const bool canSampleOptimal = (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
|
if (!canSampleLinear && !canSampleOptimal) {
|
|
qWarning("Neither linear nor optimal image sampling is supported for RGBA8");
|
|
return false;
|
|
}
|
|
|
|
static bool alwaysStage = qEnvironmentVariableIntValue("QT_VK_FORCE_STAGE_TEX");
|
|
|
|
if (canSampleLinear && !alwaysStage) {
|
|
if (!createTextureImage(img.size(), &m_texImage, &m_texMem,
|
|
VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT,
|
|
m_window->hostVisibleMemoryIndex()))
|
|
return false;
|
|
|
|
if (!writeLinearImage(img, m_texImage, m_texMem))
|
|
return false;
|
|
|
|
m_texLayoutPending = true;
|
|
} else {
|
|
if (!createTextureImage(img.size(), &m_texStaging, &m_texStagingMem,
|
|
VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
|
|
m_window->hostVisibleMemoryIndex()))
|
|
return false;
|
|
|
|
if (!createTextureImage(img.size(), &m_texImage, &m_texMem,
|
|
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT,
|
|
m_window->deviceLocalMemoryIndex()))
|
|
return false;
|
|
|
|
if (!writeLinearImage(img, m_texStaging, m_texStagingMem))
|
|
return false;
|
|
|
|
m_texStagingPending = true;
|
|
}
|
|
|
|
VkImageViewCreateInfo viewInfo;
|
|
memset(&viewInfo, 0, sizeof(viewInfo));
|
|
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
viewInfo.image = m_texImage;
|
|
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
viewInfo.format = m_texFormat;
|
|
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
|
|
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
|
|
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
|
|
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
|
|
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
viewInfo.subresourceRange.levelCount = viewInfo.subresourceRange.layerCount = 1;
|
|
|
|
VkResult err = m_devFuncs->vkCreateImageView(dev, &viewInfo, nullptr, &m_texView);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to create image view for texture: %d", err);
|
|
return false;
|
|
}
|
|
|
|
m_texSize = img.size();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool VulkanRenderer::createTextureImage(const QSize &size, VkImage *image, VkDeviceMemory *mem,
|
|
VkImageTiling tiling, VkImageUsageFlags usage, uint32_t memIndex)
|
|
{
|
|
VkDevice dev = m_window->device();
|
|
|
|
VkImageCreateInfo imageInfo;
|
|
memset(&imageInfo, 0, sizeof(imageInfo));
|
|
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
|
imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageInfo.format = m_texFormat;
|
|
imageInfo.extent.width = size.width();
|
|
imageInfo.extent.height = size.height();
|
|
imageInfo.extent.depth = 1;
|
|
imageInfo.mipLevels = 1;
|
|
imageInfo.arrayLayers = 1;
|
|
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageInfo.tiling = tiling;
|
|
imageInfo.usage = usage;
|
|
imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
|
|
VkResult err = m_devFuncs->vkCreateImage(dev, &imageInfo, nullptr, image);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to create linear image for texture: %d", err);
|
|
return false;
|
|
}
|
|
|
|
VkMemoryRequirements memReq;
|
|
m_devFuncs->vkGetImageMemoryRequirements(dev, *image, &memReq);
|
|
|
|
if (!(memReq.memoryTypeBits & (1 << memIndex))) {
|
|
VkPhysicalDeviceMemoryProperties physDevMemProps;
|
|
m_window->vulkanInstance()->functions()->vkGetPhysicalDeviceMemoryProperties(m_window->physicalDevice(), &physDevMemProps);
|
|
for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) {
|
|
if (!(memReq.memoryTypeBits & (1 << i)))
|
|
continue;
|
|
memIndex = i;
|
|
}
|
|
}
|
|
|
|
VkMemoryAllocateInfo allocInfo = {
|
|
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
|
|
nullptr,
|
|
memReq.size,
|
|
memIndex
|
|
};
|
|
qDebug("allocating %u bytes for texture image", uint32_t(memReq.size));
|
|
|
|
err = m_devFuncs->vkAllocateMemory(dev, &allocInfo, nullptr, mem);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to allocate memory for linear image: %d", err);
|
|
return false;
|
|
}
|
|
|
|
err = m_devFuncs->vkBindImageMemory(dev, *image, *mem, 0);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to bind linear image memory: %d", err);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool VulkanRenderer::writeLinearImage(const QImage &img, VkImage image, VkDeviceMemory memory)
|
|
{
|
|
VkDevice dev = m_window->device();
|
|
|
|
VkImageSubresource subres = {
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
0, // mip level
|
|
0
|
|
};
|
|
VkSubresourceLayout layout;
|
|
m_devFuncs->vkGetImageSubresourceLayout(dev, image, &subres, &layout);
|
|
|
|
uchar *p;
|
|
VkResult err = m_devFuncs->vkMapMemory(dev, memory, layout.offset, layout.size, 0, reinterpret_cast<void **>(&p));
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to map memory for linear image: %d", err);
|
|
return false;
|
|
}
|
|
|
|
for (int y = 0; y < img.height(); ++y) {
|
|
const uchar *line = img.constScanLine(y);
|
|
memcpy(p, line, img.width() * 4);
|
|
p += layout.rowPitch;
|
|
}
|
|
|
|
m_devFuncs->vkUnmapMemory(dev, memory);
|
|
return true;
|
|
}
|
|
|
|
void VulkanRenderer::ensureTexture()
|
|
{
|
|
if (!m_texLayoutPending && !m_texStagingPending)
|
|
return;
|
|
|
|
Q_ASSERT(m_texLayoutPending != m_texStagingPending);
|
|
VkCommandBuffer cb = m_window->currentCommandBuffer();
|
|
|
|
VkImageMemoryBarrier barrier;
|
|
memset(&barrier, 0, sizeof(barrier));
|
|
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
barrier.subresourceRange.levelCount = barrier.subresourceRange.layerCount = 1;
|
|
|
|
if (m_texLayoutPending) {
|
|
m_texLayoutPending = false;
|
|
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
barrier.image = m_texImage;
|
|
|
|
m_devFuncs->vkCmdPipelineBarrier(cb,
|
|
VK_PIPELINE_STAGE_HOST_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
0, 0, nullptr, 0, nullptr,
|
|
1, &barrier);
|
|
} else {
|
|
m_texStagingPending = false;
|
|
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
|
|
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
|
|
barrier.image = m_texStaging;
|
|
m_devFuncs->vkCmdPipelineBarrier(cb,
|
|
VK_PIPELINE_STAGE_HOST_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
0, 0, nullptr, 0, nullptr,
|
|
1, &barrier);
|
|
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
barrier.srcAccessMask = 0;
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.image = m_texImage;
|
|
m_devFuncs->vkCmdPipelineBarrier(cb,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
0, 0, nullptr, 0, nullptr,
|
|
1, &barrier);
|
|
|
|
VkImageCopy copyInfo;
|
|
memset(©Info, 0, sizeof(copyInfo));
|
|
copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyInfo.srcSubresource.layerCount = 1;
|
|
copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyInfo.dstSubresource.layerCount = 1;
|
|
copyInfo.extent.width = m_texSize.width();
|
|
copyInfo.extent.height = m_texSize.height();
|
|
copyInfo.extent.depth = 1;
|
|
m_devFuncs->vkCmdCopyImage(cb, m_texStaging, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
m_texImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Info);
|
|
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
barrier.image = m_texImage;
|
|
m_devFuncs->vkCmdPipelineBarrier(cb,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
0, 0, nullptr, 0, nullptr,
|
|
1, &barrier);
|
|
}
|
|
}
|
|
|
|
void VulkanRenderer::initResources()
|
|
{
|
|
qDebug("initResources");
|
|
|
|
VkDevice dev = m_window->device();
|
|
m_devFuncs = m_window->vulkanInstance()->deviceFunctions(dev);
|
|
|
|
// The setup is similar to hellovulkantriangle. The difference is the
|
|
// presence of a second vertex attribute (texcoord), a sampler, and that we
|
|
// need blending.
|
|
|
|
const int concurrentFrameCount = m_window->concurrentFrameCount();
|
|
const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
|
|
const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
|
|
qDebug("uniform buffer offset alignment is %u", (uint) uniAlign);
|
|
VkBufferCreateInfo bufInfo;
|
|
memset(&bufInfo, 0, sizeof(bufInfo));
|
|
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
// Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign.
|
|
const VkDeviceSize vertexAllocSize = aligned(sizeof(vertexData), uniAlign);
|
|
const VkDeviceSize uniformAllocSize = aligned(UNIFORM_DATA_SIZE, uniAlign);
|
|
bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize;
|
|
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create buffer: %d", err);
|
|
|
|
VkMemoryRequirements memReq;
|
|
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq);
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = {
|
|
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
|
|
nullptr,
|
|
memReq.size,
|
|
m_window->hostVisibleMemoryIndex()
|
|
};
|
|
|
|
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to allocate memory: %d", err);
|
|
|
|
err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to bind buffer memory: %d", err);
|
|
|
|
quint8 *p;
|
|
err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p));
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to map memory: %d", err);
|
|
memcpy(p, vertexData, sizeof(vertexData));
|
|
QMatrix4x4 ident;
|
|
memset(m_uniformBufInfo, 0, sizeof(m_uniformBufInfo));
|
|
for (int i = 0; i < concurrentFrameCount; ++i) {
|
|
const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize;
|
|
memcpy(p + offset, ident.constData(), 16 * sizeof(float));
|
|
m_uniformBufInfo[i].buffer = m_buf;
|
|
m_uniformBufInfo[i].offset = offset;
|
|
m_uniformBufInfo[i].range = uniformAllocSize;
|
|
}
|
|
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
|
|
|
|
VkVertexInputBindingDescription vertexBindingDesc = {
|
|
0, // binding
|
|
5 * sizeof(float),
|
|
VK_VERTEX_INPUT_RATE_VERTEX
|
|
};
|
|
VkVertexInputAttributeDescription vertexAttrDesc[] = {
|
|
{ // position
|
|
0, // location
|
|
0, // binding
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0
|
|
},
|
|
{ // texcoord
|
|
1,
|
|
0,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
3 * sizeof(float)
|
|
}
|
|
};
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
|
|
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputInfo.pNext = nullptr;
|
|
vertexInputInfo.flags = 0;
|
|
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
|
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
|
|
vertexInputInfo.vertexAttributeDescriptionCount = 2;
|
|
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
|
|
|
|
// Sampler.
|
|
VkSamplerCreateInfo samplerInfo;
|
|
memset(&samplerInfo, 0, sizeof(samplerInfo));
|
|
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
|
|
samplerInfo.magFilter = VK_FILTER_NEAREST;
|
|
samplerInfo.minFilter = VK_FILTER_NEAREST;
|
|
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerInfo.maxAnisotropy = 1.0f;
|
|
err = m_devFuncs->vkCreateSampler(dev, &samplerInfo, nullptr, &m_sampler);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create sampler: %d", err);
|
|
|
|
// Texture.
|
|
if (!createTexture(QStringLiteral(":/qt256.png")))
|
|
qFatal("Failed to create texture");
|
|
|
|
// Set up descriptor set and its layout.
|
|
VkDescriptorPoolSize descPoolSizes[2] = {
|
|
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uint32_t(concurrentFrameCount) },
|
|
{ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, uint32_t(concurrentFrameCount) }
|
|
};
|
|
VkDescriptorPoolCreateInfo descPoolInfo;
|
|
memset(&descPoolInfo, 0, sizeof(descPoolInfo));
|
|
descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descPoolInfo.maxSets = concurrentFrameCount;
|
|
descPoolInfo.poolSizeCount = 2;
|
|
descPoolInfo.pPoolSizes = descPoolSizes;
|
|
err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create descriptor pool: %d", err);
|
|
|
|
VkDescriptorSetLayoutBinding layoutBinding[2] =
|
|
{
|
|
{
|
|
0, // binding
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
1, // descriptorCount
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
nullptr
|
|
},
|
|
{
|
|
1, // binding
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
1, // descriptorCount
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
nullptr
|
|
}
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
|
|
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
2, // bindingCount
|
|
layoutBinding
|
|
};
|
|
err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create descriptor set layout: %d", err);
|
|
|
|
for (int i = 0; i < concurrentFrameCount; ++i) {
|
|
VkDescriptorSetAllocateInfo descSetAllocInfo = {
|
|
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
|
|
nullptr,
|
|
m_descPool,
|
|
1,
|
|
&m_descSetLayout
|
|
};
|
|
err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to allocate descriptor set: %d", err);
|
|
|
|
VkWriteDescriptorSet descWrite[2];
|
|
memset(descWrite, 0, sizeof(descWrite));
|
|
descWrite[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descWrite[0].dstSet = m_descSet[i];
|
|
descWrite[0].dstBinding = 0;
|
|
descWrite[0].descriptorCount = 1;
|
|
descWrite[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
descWrite[0].pBufferInfo = &m_uniformBufInfo[i];
|
|
|
|
VkDescriptorImageInfo descImageInfo = {
|
|
m_sampler,
|
|
m_texView,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
|
|
};
|
|
|
|
descWrite[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descWrite[1].dstSet = m_descSet[i];
|
|
descWrite[1].dstBinding = 1;
|
|
descWrite[1].descriptorCount = 1;
|
|
descWrite[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
|
descWrite[1].pImageInfo = &descImageInfo;
|
|
|
|
m_devFuncs->vkUpdateDescriptorSets(dev, 2, descWrite, 0, nullptr);
|
|
}
|
|
|
|
// Pipeline cache
|
|
VkPipelineCacheCreateInfo pipelineCacheInfo;
|
|
memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
|
|
pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
|
|
err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create pipeline cache: %d", err);
|
|
|
|
// Pipeline layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
|
|
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
|
|
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutInfo.setLayoutCount = 1;
|
|
pipelineLayoutInfo.pSetLayouts = &m_descSetLayout;
|
|
err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create pipeline layout: %d", err);
|
|
|
|
// Shaders
|
|
VkShaderModule vertShaderModule = createShader(QStringLiteral(":/texture_vert.spv"));
|
|
VkShaderModule fragShaderModule = createShader(QStringLiteral(":/texture_frag.spv"));
|
|
|
|
// Graphics pipeline
|
|
VkGraphicsPipelineCreateInfo pipelineInfo;
|
|
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
|
|
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
|
|
VkPipelineShaderStageCreateInfo shaderStages[2] = {
|
|
{
|
|
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
vertShaderModule,
|
|
"main",
|
|
nullptr
|
|
},
|
|
{
|
|
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
fragShaderModule,
|
|
"main",
|
|
nullptr
|
|
}
|
|
};
|
|
pipelineInfo.stageCount = 2;
|
|
pipelineInfo.pStages = shaderStages;
|
|
|
|
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo ia;
|
|
memset(&ia, 0, sizeof(ia));
|
|
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
|
|
pipelineInfo.pInputAssemblyState = &ia;
|
|
|
|
// The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor.
|
|
// This way the pipeline does not need to be touched when resizing the window.
|
|
VkPipelineViewportStateCreateInfo vp;
|
|
memset(&vp, 0, sizeof(vp));
|
|
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
vp.viewportCount = 1;
|
|
vp.scissorCount = 1;
|
|
pipelineInfo.pViewportState = &vp;
|
|
|
|
VkPipelineRasterizationStateCreateInfo rs;
|
|
memset(&rs, 0, sizeof(rs));
|
|
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rs.polygonMode = VK_POLYGON_MODE_FILL;
|
|
rs.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
|
|
rs.lineWidth = 1.0f;
|
|
pipelineInfo.pRasterizationState = &rs;
|
|
|
|
VkPipelineMultisampleStateCreateInfo ms;
|
|
memset(&ms, 0, sizeof(ms));
|
|
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
pipelineInfo.pMultisampleState = &ms;
|
|
|
|
VkPipelineDepthStencilStateCreateInfo ds;
|
|
memset(&ds, 0, sizeof(ds));
|
|
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
ds.depthTestEnable = VK_TRUE;
|
|
ds.depthWriteEnable = VK_TRUE;
|
|
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
pipelineInfo.pDepthStencilState = &ds;
|
|
|
|
VkPipelineColorBlendStateCreateInfo cb;
|
|
memset(&cb, 0, sizeof(cb));
|
|
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
// assume pre-multiplied alpha, blend, write out all of rgba
|
|
VkPipelineColorBlendAttachmentState att;
|
|
memset(&att, 0, sizeof(att));
|
|
att.colorWriteMask = 0xF;
|
|
att.blendEnable = VK_TRUE;
|
|
att.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
att.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
att.colorBlendOp = VK_BLEND_OP_ADD;
|
|
att.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
att.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
att.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
cb.attachmentCount = 1;
|
|
cb.pAttachments = &att;
|
|
pipelineInfo.pColorBlendState = &cb;
|
|
|
|
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dyn;
|
|
memset(&dyn, 0, sizeof(dyn));
|
|
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
|
|
dyn.pDynamicStates = dynEnable;
|
|
pipelineInfo.pDynamicState = &dyn;
|
|
|
|
pipelineInfo.layout = m_pipelineLayout;
|
|
pipelineInfo.renderPass = m_window->defaultRenderPass();
|
|
|
|
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create graphics pipeline: %d", err);
|
|
|
|
if (vertShaderModule)
|
|
m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr);
|
|
if (fragShaderModule)
|
|
m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr);
|
|
}
|
|
|
|
void VulkanRenderer::initSwapChainResources()
|
|
{
|
|
qDebug("initSwapChainResources");
|
|
|
|
// Projection matrix
|
|
m_proj = m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences
|
|
const QSize sz = m_window->swapChainImageSize();
|
|
m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 100.0f);
|
|
m_proj.translate(0, 0, -4);
|
|
}
|
|
|
|
void VulkanRenderer::releaseSwapChainResources()
|
|
{
|
|
qDebug("releaseSwapChainResources");
|
|
}
|
|
|
|
void VulkanRenderer::releaseResources()
|
|
{
|
|
qDebug("releaseResources");
|
|
|
|
VkDevice dev = m_window->device();
|
|
|
|
if (m_sampler) {
|
|
m_devFuncs->vkDestroySampler(dev, m_sampler, nullptr);
|
|
m_sampler = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_texStaging) {
|
|
m_devFuncs->vkDestroyImage(dev, m_texStaging, nullptr);
|
|
m_texStaging = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_texStagingMem) {
|
|
m_devFuncs->vkFreeMemory(dev, m_texStagingMem, nullptr);
|
|
m_texStagingMem = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_texView) {
|
|
m_devFuncs->vkDestroyImageView(dev, m_texView, nullptr);
|
|
m_texView = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_texImage) {
|
|
m_devFuncs->vkDestroyImage(dev, m_texImage, nullptr);
|
|
m_texImage = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_texMem) {
|
|
m_devFuncs->vkFreeMemory(dev, m_texMem, nullptr);
|
|
m_texMem = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_pipeline) {
|
|
m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr);
|
|
m_pipeline = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_pipelineLayout) {
|
|
m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr);
|
|
m_pipelineLayout = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_pipelineCache) {
|
|
m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
|
|
m_pipelineCache = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_descSetLayout) {
|
|
m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr);
|
|
m_descSetLayout = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_descPool) {
|
|
m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr);
|
|
m_descPool = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_buf) {
|
|
m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr);
|
|
m_buf = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_bufMem) {
|
|
m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
|
|
m_bufMem = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void VulkanRenderer::startNextFrame()
|
|
{
|
|
VkDevice dev = m_window->device();
|
|
VkCommandBuffer cb = m_window->currentCommandBuffer();
|
|
const QSize sz = m_window->swapChainImageSize();
|
|
|
|
// Add the necessary barriers and do the host-linear -> device-optimal copy, if not yet done.
|
|
ensureTexture();
|
|
|
|
VkClearColorValue clearColor = {{ 0, 0, 0, 1 }};
|
|
VkClearDepthStencilValue clearDS = { 1, 0 };
|
|
VkClearValue clearValues[2];
|
|
memset(clearValues, 0, sizeof(clearValues));
|
|
clearValues[0].color = clearColor;
|
|
clearValues[1].depthStencil = clearDS;
|
|
|
|
VkRenderPassBeginInfo rpBeginInfo;
|
|
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
|
|
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
rpBeginInfo.renderPass = m_window->defaultRenderPass();
|
|
rpBeginInfo.framebuffer = m_window->currentFramebuffer();
|
|
rpBeginInfo.renderArea.extent.width = sz.width();
|
|
rpBeginInfo.renderArea.extent.height = sz.height();
|
|
rpBeginInfo.clearValueCount = 2;
|
|
rpBeginInfo.pClearValues = clearValues;
|
|
VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
|
|
m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
quint8 *p;
|
|
VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset,
|
|
UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p));
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to map memory: %d", err);
|
|
QMatrix4x4 m = m_proj;
|
|
m.rotate(m_rotation, 0, 0, 1);
|
|
memcpy(p, m.constData(), 16 * sizeof(float));
|
|
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
|
|
|
|
// Not exactly a real animation system, just advance on every frame for now.
|
|
m_rotation += 1.0f;
|
|
|
|
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline);
|
|
m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1,
|
|
&m_descSet[m_window->currentFrame()], 0, nullptr);
|
|
VkDeviceSize vbOffset = 0;
|
|
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset);
|
|
|
|
VkViewport viewport;
|
|
viewport.x = viewport.y = 0;
|
|
viewport.width = sz.width();
|
|
viewport.height = sz.height();
|
|
viewport.minDepth = 0;
|
|
viewport.maxDepth = 1;
|
|
m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);
|
|
|
|
VkRect2D scissor;
|
|
scissor.offset.x = scissor.offset.y = 0;
|
|
scissor.extent.width = viewport.width;
|
|
scissor.extent.height = viewport.height;
|
|
m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);
|
|
|
|
m_devFuncs->vkCmdDraw(cb, 4, 1, 0, 0);
|
|
|
|
m_devFuncs->vkCmdEndRenderPass(cmdBuf);
|
|
|
|
m_window->frameReady();
|
|
m_window->requestUpdate(); // render continuously, throttled by the presentation rate
|
|
}
|